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EXECUTIVE STATEMENT

As Puerto Rico is considered among the prime locations
for operating OTEC plants, the U.S. Department of Energy is
looking at the oceanographic conditions 3round the isiand.
The OTEC criteria apply to more than one location around
the island, and although this report covers the general
characteristics of the waters around Puerto Rico, the pri-
mary emphasis is on the Punta Tuna area, on the southeast
of the main island.

This document is in response to a portion of a 4-phase
project designed to secure and evaluate oceanic physical
and biological data at the Punta Tuna site. The phases
provide for:

1. The compilation of a yearly set of pericdically
sampled oceanic data at the benchmark site of
Punta Tuna.

2. An interpretation of the relevant literature,
recently procured data, and long-term current
meter data taken concomitant to this program.

3. A thorough historical literature and data search
of oceanic data and an interpretation thereof.

4. Recommendations for future studies of the OTEC
oceanographic program.

This document addressess the last two phases of the
project.

One of these two phases consists of two major reguire-
ments:- an historical literature search and a historical
data search. The l1iterature search has provided two ful}l
bibliographies. Each of these bibliographies appears as a
separate appendix in this report, one dealing with the
physical oceanography, and the other with biological cite-
tions. The data search has reaffirmed to us the fact that
this area of the world's oceans has not been sufficiently
studied to statistically say, with any certainty, what the
year-to-year and month-to-month variations in most of the
physical parameters might be, let alone the short-term
variations. We can only begin to identify some trends in
most cases (i.e., surface temperature, thermal resource,
subsurface temperatures, and salinity). The historical
record of deep water motion studies in the area is sparse
indeed, as are biological descriptions of the area.

The other phase of the project consists of recommen-
dations for future oceanographic studies. These recommen-
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dations are based on both the present uﬁderstanding of tne
OTEC concept, and our understanding of the oceanic condi-
tions in the area.

The other two appendices at the end of the report
contain pertinent supplimental information. One of these
appendices discusses the near shore currents along the south
coast, and the other has temperature vs. depth profiles from
the historical data sets of the area.

iy
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1.0. INTRODUCTION

Puerto Rico is now considered by the U.S. Department
of Energy as being among the prime Tocations for the place-
ment of one of the first operating Ocean Thermal Energy
Conversion (OTEC) power generating piants. The specific
area of Puerto Rico that is being considered lies about two
miles southeast of Punta Tuna, a point on the southeast of
the main isTand. This site is close to deep, cold water,
has year-round warm surface water, is reasonably available
by air and surface transportation, and could be easily incor-
porated into the island-wide electrical power grid. These
criteria also apply to many locations around the island.
This report covers the general characteristics of the waters
around Puerto Rico, but the primary emphasis in the report is
placed on the Punta Tuna area.

The intent of this document is to gather and interpret
the available information, both published and unpublished,
that will énhance the knowledje of the physical and biolog-
ical oceanography of the area. We have also developed two
extensive bibliographies, one of the pertinent physical
oceanography, and one of the pertinent biological oceanugraphy.
Finally, after a review of the historical results and the
fiscal 1979 data collection program, recommendations are made
for increasing the effectiveness of the future OTEC field . -

data collection program.



2.0. PHYSICAL "'OCEANOGRAPHY

2.1, INTRODUCTION TO PHYSICAL OCEANOGRAPHY

The Commonwealth of Puerto Rico, associated with the
United States by bilateral agreement, consists of a main
island and several smaller islands. These islands are
all Tocated along the Antilles Chain of islands, extending
almost from Florida, U.S.A. to Venezuela, South America
(see Fig. 1). Puerto Rico is approximately half way along
the Chain, about 1700 km from Miami, Florida. The nearest
large land mass to Puerto Rico is the island of Hispafiola,
about 130 km to the west. The Chain can be considered the
separation between the Atlantic Ocean and the Caribbean
Sea. As Puerto Rico is situated along an east-west axis,
the Atlantic washes its north coast, and the Caribbean,
its south coast. At the latitude of about 18°N,- Puerto
Rico is in the trade wind belt, with both the winds and
oceanic currents generally moving east to west past the
island.

The main island of Puerto Rico is roughly rectangular
in shape, about 180 km east to west, and about 60 km north
to south. The island is a mixture of mountains, rolling
hills, and broad flat plains. MWhere the plains meet ‘the :
sea, the cliimate is typically tropical marine (except along
the desert-like southwestern coast).

This literature review of the physical oceanographic
conditions at the proposed Punta Tuna OTEC Site in Puerto
Rico will be restricted to the following parameters:

Climate :

Wind regime (including hurricanes)

Waves regime

Oceanic and island shelf currents

Salinity and temperature depth distribution

O ) DO

Two distinct seasons appear to emerge in the litera-~
ture, as seen from the standpoint of the hydrographic con-
ditions of the surface waters along the south coast of
Puerto Rico. This assertion is based mainly on climatologi-
cal processes, in particular the wind system, generate the
water circulation patterns (currents) in the upper waters,
which affect and modify the distribution of mass as deter-
mined by the distribution of temperature and salinity. The
available c¢limatic and sea-state observations along the
continental shelf of the South Coast are sufficient to indi-
cate a winter trend and a summer trend. The hydrographic
data, although sparse and probably insufficient, also reveal
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significant seasonal variations during the winter and summer
months. These winter-summer variations are demonstrated by

the existing reports and regional environmentatl data summa-

ries to be discussed within this report.

Deep water circulation at the Punta Tuna OTEC site
needs to be monitored for longer periods of time; the avail-
able data are insufficient to characterize the current vari-
ations in the area (Webster, 1969).

2.2. CLIMATE

In general, the climate of Puerto Rico is typically
tropical marine. That is, during the day as the land mass
heats up, a convection cell is developed, causing the winds
to move landward from the sea, bringing the moist sea air
with them. In the evening as the land cools, the convection
cell reverses and the winds blow offshore. Due to the
numerous hills and mountains on the island of Puerto Rico,
the moist sea air is frequently cooled to saturation while
still over the land mass. This causes considerable rainfall,
almost daily over some parts of the island.

The Punta Tuna OTEC site, typical of much of the island,
also has a tropical marine climate. Using data from the
U.S. Weather Service Command (1974) and thé U.S. Air Weather
--Service, general meteorological statistics:can be developed.

In summary, the meteorological conditions are as
follows:

For the north coast area (Fig, 2) there is no symmer
and winter, but simply a change from wet season to a somewhat
drier season. Air temperatures vary within a mean daily range
of 10 to 15 Fahrenheit degrees, fluctuating between the low
70's and the low 80's from December through April and between
the mid 70's and the upper 80's from May through November.
The lowest value recorded at San Juan Airport was 60.1°F.

Prolonged intervals of either sunny, cloudless weather
or completely overcast weather are unusual. The common con-
dition is partly cloudy, in which the cumuli occupy between
40 to 60 percent of the sky. Relative humidities are high
during the entire year, usually ranging between 65 and 85
percent. Onily rarely does the relative humidity drop below
50 percent. Dense fog is seldom seen., Squalls and thunder-
storms are common from May through November,

Although the U.S. Coast Guard has maintained a light
station at Punta Tuna for many years, no statistical compi-
lation has ever been made of the weather data observed at
that station. Statistics do exist for San Juan, about 40 km
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“.-would be only +10 F° from the mean.

northwest of Punta Tuna. Some of these values are shown in
Table 1. The thirty-year (normal) values of temperature and
rainfall, as well as the 23-year (normal) values of relative
humidity, are seen in the table as a function of month.
Values from Punta Tuna would probably be similar to these.

For tropical marine areas, atmospheric pressure changes
are normally very small. Changes of 5 mm of mercury (0.2
inches) over a couple of months is rare. However, the prox-
imity of severe tropical weather, such as tropical depres-
sions, waves, storms, or hurricanes, could cause large drops
in the atmospheric pressure. These pressure changes, in
turn, are instrumental in controlling the local sea level.
As the sea level is changed by such pressure disturbances,
deep water is brought up toward, and in some cases, to, the
surface. This could bring coo]er, more dense water to the
surface, which could seriously affect the operation of an
OTEC plant. Table 2 shows the expected minimum pressures
as a function of frequency in years to return again.

Figures 3 and 4 are reproduced from (Atwood, et al.

1976). Figure 3 shows graphically the monthly maximum,

minimum, and mean air temperature for the oceanic area south
of Puerto Rico. The data indicate that the maximum tempera-
tures usually occur in late summer, and the cooler tempera-
tures occur in late winter. The monthly mean temperature
seems to vary only a couple of Fahrenheit degrees above or
below 80°F. The maximum range of values ever expected

Figure 4 shows the frequency of occurrence of values of
relative humidity for the same oceanic region south of Puerto
Rico. About 85% of the time the relative humidity is above
70%. .

Table 3 summarizes the meteorological and climatic
factors for the Caribbean Sea, as taken from Publication
H.0. 21, U.S. Dept. of Commerce (1958). The summary indi-
cates there are very small pressure variations throughout
the year, and relatively higher temperature and precipitation
in the summer and autumn months.

2. 3. TIDES

The tides on the Caribbean coasts of Puerto Rico are
generally of the mixed diurnal type, with a small semi-diurnal
component. An amphidromic (nodal) point of the principal
lunar semidiurnal (h@) tidal constituent lies near the site
(Atwood et al., 1976; Dietrich, 1963; Defant, 1961). The
nearness to the node implies minimal tidal motion. 1In addi-
tion, as Punta Tuna is on the somewhat exposed eastern side
of the island, the tidal system affecting the North Atlantic
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(with its amphidromic east of Newfoundland) may also affect
our site. The result could be a moderately confused tidal
current over our area of interest. Figure 5, reproduced

from Atwood et al. (1976), shows the predicted tides as taken
from the U.S. Department of Commercé Tide Tables {1973) for
Puerto de Maunabo, Puerto Rico. This listed station is only
about 0.5 km west of Punta Tuna. The figure illustrates the
maximum (spring) typical tidal range (about 55 cm) which
coincides with a new moon stage and summer solstice.

The tidal currents in the Punta Tuna area are expected
to move generally east and west. The tidal current is
expected to move westerly during the flood tide, and easterly
during the ebb tide. The actual result of this tidal motion
on the prevailing water motion at Punta Tuna is still unknown.

2.4  WIND REGIME

The periodicity and overall stability of the wind regime
and atmospheric pressure variations along the north coast of
Puerto Rico, being under the influence of the Trade Wind
system, are documented for all to see. This is illustrated
in Tables 4 and 5, taken from the U.S. Coastal Pilot, Area 5
(u.S. Dept. of Commerce, 1976), and from the U.S. Naval
Weather Service Command (1974), respectively. Table 4 shows
the summary of weather data observed at the San Juan airport.

- The results are.similar.-to, but not the same_as, .the oceanic :

conditions along the south coast. Table 5 summarizes the . .~
wind observations at Viegques, the large island east of the
main island (Fig. 2). '

The U.S. Coastal Pilot, Area 5 (U.S. Dept. of Commerce,
1976), summarizes the wind regime on the coasts of the island
as follows:

"The previaling winds over Puerto Rico
are the E trades, which generally blow
fresh during the day. The center of
the Bermuda High shifts a Tittle N in
summer and S in winter changing the
direction of the winds over that island
from NNE in winter to E in summer.

Factors which interrupt the trade wind
flow are frontal and E wave passages.
As the cold front approaches, the wind
shifts to a more S direction, and then
as the front passes there is a gradual
shift through the SW and NW guadrants
back to NE. The E wave passage nor-
mally does not bring a W wind but is
usually characterized by an ENE wind
ahead of the wave and a change to ESE
following the passage.

11



PREDICTED TIDE FOR PUERTO MAUNABO, I5-2a JUNE, 1974 {GMT}
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JUNE 1974
Figure 5 '(from Atwood, wt. al. 1975).
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Table 4

WEATHER DATA FOR SAN JUAN, PUERTO RICO,
{from the U.5. Coastal Pilot, 9th ed., 1976, V.5, Dept. of Comm.).
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Major disturbances to the normal trade wind circulation
are caused by the passage of easterly waves, hurricanes,
tropical storms, squalls, and thunderstorms. Hurricanes and
tropical storms are the two most important influences. Dur-
ring the winter months, cyclones originate over the Gulf of
Mexico and move northward along the east coast of the United
States. These depressions move slowly out into the North
Atlantic where they can generate southward-moving waves hav-
ing large heights and long wave lengths. Swells produced in
this manner commonly approach the study area.

The distribution of wind speed for the area near Vieques
is given in Figure 8. The most frequently occurring wind
speeds Tie between 5 to 8 m/s, occurring 37.3% of the year.
Wind speeds between 3 and 11 m/s occur 75.7% of the year and
indicate the predominance of moderate wind speeds in the
study area. High wind speeds in excess of 14 m/s occur only
4% of the year.

The percentage of the year that wind speeds at Vieques
exceed a given value is shown in Figure 9. The average wind
speed is 6 m/s. MWinds exceed 18 m/s about .1% or approxi-
mately 9 hours a year.

Extreme wind speeds associated with hurricanes are given
in Figure 10. The Figure gives the percentage of time the
wind speed will exceed a given value for the duration of one

--hour--and the return interval for_ extreme winds. The annual
maximum wind speed for one hour is expected to be between 23
and 28 m/s. The maximum wind speed lasting one hour expected
in ten years is between 29 and 39 m/s.

The distribution of winds over the principle compass
directions is given in Figure 11. Winds from the east domi-
nate the statistics, occurring 52.5% of the year. The next
most likely wind direction is northeast, occurring 23.9% of
the year. Winds with an easterly component {NE, E, SE)
account for 89.5% of the observed winds.

Atwood, et al. (1976), summarized wind regime data for
the area taken from Publication H.0. 21, U.S. Dept. of Com-
merce (1958), and from the USNOO, Environmental Acoustic
Atlas of the Caribbean Sea and Gulf of Mexico (Vol. II, Mar.
Envir., SP 189, 1972). The data show that windspeeds’
average from 4.5 to 5 m/s in autumn, to 6 to 8 m/s in summer,
with strong northerly winds of greater than 14 m/s occurring
from November to April when the passage of fronts and easterly
waves interrupsts the normal trade wind pattern. The frequency
of these northerly winds, according to the data in SP 189II,
is about 2% of the year. Northerly winds are also common
during the nighttime when diurnal variations in the Trades
are accentuated by the landbreeze system generated by the
isTand of Puerto Rico landmass. Figures 7 to 10 of the

21
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Atwood report (reproduced here as Figures 12 to 15) show a
"¢rude summary of the oceanic wind conditions around the
island of Puerto Rico," (Atwood, et al. 1976).

Lee, et al. (1978) summarized the wind regime of a
nearby area in their assessment of an OTEC site off the
island of St. Croix, U.S. Virgin Islands. They referred to
the s1ight seasonal variation of the Trade Winds system
which generates high winds from 7 to 13 m/s during mid-
summer. The.average monthly wind speeds range from 5 m/s
in October to 8 m/s in July (Miller, 1977--cited by Lee, et
al. 1978), with an annual mean of approximately 6 m/s,
according to Burns, 1977, cited by Lee, et al. 1978. Citing
the above investigators, the wind regime variations are
summarized as follows:

“The wind direction is out of the
eastern quadrant throughout the
year. Winds are generally due east
during the summer, when the doldrum
belt is over Venezuela and the
Bermuda High is most intense and
extensive. At other times of the
year, when the doldrum belt is south
over the equator, the Bermuda High
weakens and winds are more out of
the northeast. Tropical storm force
winds (17 m/s) have. been observed .in _
all months., 7 777 o

tasterly waves occasionally affect

the Virgin Islands area. During
summer, 1977, two waves passed in

the vicinity of St. Croix causing an
increase in wind speeds {(up to 15 m/s)
and heavy rains. These tropical waves
form to the north of the inter-tropical
convergence zone in the deep easterly
flow that flows clockwise around the
southern portions of the Azores anti-
cyclone (H.0. Pub. 22). During the
passage of an easterly wave, winds are
ENE ahead of the wave and ESE following
(Burns, 1977)."

2.5. HURRICANES

The characteristics of hurricanes reaching the United
States have been intensively studied; however, similar infor-
mation is not available for hurricanes at lower latitudes.

The study site does, in fact, 1ie somewhat along the hurricane

track as the storms transit westward from the Atlantic to
the Gulf of Mexico.

23
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Some information about hurricanes affecting the study
site can be determined from the U.S. Dept. of Commerce
review of major hurricanes between the years 1873 and 1967.
During these 94 years there were 94 hurricanes reported, an
average of one hurricane per year. Many of these hurricanes
passed to the north or south of the proposed site, and would
have affected weather conditions around it. Figure 16 shows
the track of two such hurricanes. There were 30 hurricanes
during the 94-year period that passed within 100 km of
Vieques. The intensity range of the storms, in increasing
order, is: average, major, extreme, and great hurricanes,
as given in Table 6. The mean recurrezce interval for
hurricanes strongly affecting Vieques is about 1 per 3 years.
These storms, however, are not uniformily distributed over
the years. As shown in Figure 17, the hurricanes affecting
Vieques have occurred in groups. In some years (1933 and
1955) two hurricanes occurred in one year. During some other
periods, no hurricanes occurred for many years.

Atwood, et al. (1976) and Lee, et al. (1978) showed
the tracks of some devastating North Atlantic hurricanes in
their reports. These hurricanes must have affected the
proposed Puerto Rico OTEC site. The map of these hurricane
tracks is reproduced here as Figure 18. Figure 19 shows the
graph for the occurrence of tropical cyclones in the five
degree square bounded by 150°-20°N, 65°-70°W, from Atwood,
et al. (1976). Recurrence probabitity of tropical storms in

_.the Puerto Rico area is about 70% annually; mean translation

velocity movement of these storms is about 12 kts towards
the west-north-west (U.S. Naval Weather Service Command, 1974).
Clearly, August and September are the most affected months,

with a significant number occurring in July and October as
well.

2.6. WAVE STATISTICS

Wave statistics for the 'study area were taken from the
Summary of Synoptic Meteorological Observations (SSMO),
Area 23, which is near Vieques, P.R. Wave statistics for the
SSMO data are based upon several years' visual observations.
In addition, one year of measured data reported by Deane
(1974) was also used.

The distribution of significant wave heights for the
area of Vieques is given in Figure 21. The most frequently
occurring wave height is in the interval of .3-.8 m occurring
41% of the year. The average significant wave height ‘is
1 m. Wave heights in the range from .3 to 1.4 m occur 79.3%
of the year. Large wave heights greater than 2.3 m occur
rather infrequently, accounting for only 1.3%.
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TABLE 6. HURRICANES COMING WITHIN 100 KH OF VIEQUES - 1873 co 1967

DATE
August
Au;u;t
August
August
Sdptesber
Septesher
August
Scptcnbef
Sepraxber
Sepreaber
August
August
August
Slp}:nh;é
Septeaber
Scitcmb:r

Septenber

-iu;ult

August
Septenber
Septenber
August
Septexbar
August
Septeaber
August
August
Anxusi
September
Septcoaber

1873
1879
1880
1881
1882
1883
1883
1894
1896
1898
1599
1900
1915
1917
1519
1926
1928
1933
1940
1945
1947
1949
1954
1955
1955
1960
1964
1955
1966
1967

INTERSIXY

Hajer
Extreas
Hajor
Hajor
MHajor
Hajor
Extrame
Average
Average
Exrreos
Extreme
Crteat
Great
Average
Great.
Creat
Great™
‘Creat
Hajor
th:en;
Great
Extreme
Extrens
Great
G:l;t
Great
Hajor
Creat
Creat

Crear

DIRECTION TO HWURRICANE AT NEAREST POIKT
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The distribution of wave periods for Area 23 is
given in Figure 22. The dominant wave period is less
than 6 sec, accounting for 78.7% of the year. The average
wave period is 5.9 sec. Wave periods indicative of swell
(greater than 9.5 sec) occur only 1.8% of the year.

The percentage of wave heights that exceed a specific
vatue is given in Figures 23 and 24. Figure 23 gives the
cumulative percent of low to moderately large wave heights.
Wave heights exceed 3 m only about 0.5% of the year, or
about 2 days (43.8 hours) per year. The extreme wave
height cumulative percentages and return intervals are
given in Figure 24, Two lines are shown which give con-
servative (larger value)} and liberal (smaller value)
height values. Wave heights between 5.5 and 6 m would recur
on an average of once every 3 years. Wave heights of above
8 m are expected very infreguently, recurring on the
average of about once every 100 years.

Wave height versus wind speed for the study area is
shown in Figure 25. Wave height increases slowly with
wind speed until about 6 m/s, then there is a rapid
increase in wave height. At a wind speed of 4 m/s, the
significant wave height would be about .3-.5 m; for a
8 m/s wind, the significant wave height is 1 to 1.2 m,

and for a 9 m/s wind, the significant height is about
2.7 m.

"Seas and swells" observations are reported daily
to the U.S. Naval Oceanographic Data Center (NODC). This
governmental agency compiles all the observations reported
by ocean gding ships, and statistically summarizes the
characteristics and range of the waves. Tables 9 to 11
are reproductions of summariec published by the U.S. Naval
Weather Service Command in the SSMO (1974). An analysis
of these tables reveals a winter-summer wave regime
difference. Table 9, the ‘tabulated annual summary, points
out the knuwn dependent relationship between the wind
system and generated swell variations. Wave periods,
although very infrequently, may reach values greater than
10 seconds, the mean range being from 4 to 8 seconds for
a mean wave height range of .6 to 2 m. A summary of the
sea swell data in the tables indicates that the values
fo direction and period for the swells in the winter are
similar to those of autumn, and those occurring in the
spring are similar to the summer values. In the winter,
the swells of period less or equal to 5 seconds usually
come from the east or northeast, about equally divided.
In summer, the direction comes fromthe east almost all
the time. For the 6-9 second period swells, the winter
values are usually from the east, with a significant percent
from the northwest to northeast. In the summer, the
number from non-east directions is almost zero. Finally,
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some swells of period greater than 9 seconds occur i1n the
winter, going from north to east. During the remainder
O of the year almost none of these long waves can be expected.

Figures 26 to 32 are reproductions of Figures 15 to

19, and 21 to 22 in the Atwood, et al. {1976) report.
These figures show a seas and swells analysis for different
months of the year as taken from the data contained in

Q SP 18911 for the oceanic region surrounding Puerto Rico.
The authors point out that these data "do not take into
account the masking at Yabucoa by the islands of Puerto
Rico and Vieques." According to these investigators the
information in these figures is given for "its value as a
guide to the conditions which may be expected while the

e plant is being towed to the site from its place of construc-
tion." The data in the mentioned report are summarized as
follows:

"The percentage of "calm" swell is
over 85% for winter and summer in

0 coastal waters and less than 19% in
the open ocean. Similarly, swell
in the coastal area 1s never ob-
served in the quadrant N to E (0°to
90°) but in the open ocean this quad-
rant accounts for over two-thirds of
all observed swell, and nearly all

Q S observations greater than 12 feet _

S high (3.6 meters)."

Bretschneider (1977) calculated by hindcasting methods

a design wave for potential OTEC sites which included the
Punta Tuna site in Puerto Rico. Table 12 shows the results

O of the analysis conducted by Bretschneider (1977) for
hurricane wave and wave spectra parameters for the sites
considered. From this table the most probable hurricane is
predicted as having a wind of greater than 41 m/s, with
waves averaging over 7 m, and peaking at about 20 m. The
results of a frequency and 'spectral density analysis for

O various sea state and wind velocity spectrums are illustrated
on pages 19 to 39 of Bretschneider's report, by means of
spectral density curves and tables.

O 2.7. WATER MASSES

The water masses in the Caribbean have been diécussed
by many authors (Wust, 1963; Atwood et al. 1976; Craig et al.
1878, Lee et al. 1978), but for completeness they shall be

mentioned again here in this report in order to consolidate
the information.

The cold water intake pipe of an OTEC plant would prob-
ably extend from the surface to about 1000 m deep. With the
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Fig. 26. (from Atwood et. al. 1976).
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Fig. 29.

(from Atwood et. al. 1975).
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Fig. 30. (from Atwood et. al., 1976).
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Fig. 31. {from Atwood et. al,. 1976).
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Fig. 32. (from Atwond et. al. 1976).
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intake opening at 1000 m depth, the intake water would come
from approximately 50-100 m above and below that depth.
Therefore, for the purposes of this report, the water masses
in the upper 1100 m of water in the northern Caribbean will
be considered.

The upper water mass is named the Tropical Surface
Water. The origin of this water is under the equatorial
atmospheric trough (low), which is a tropical rain belt
located to the northeast of South America. As this water
mass is influenced by the precipitation in that area, it is
also influenced by the rain and runoff in the drainage basins
of the Amazon and Orinoco Rivers in the northeastern part of
South America. The water mass is then driven by the winds
and the earth's rotation into the Caribbean Sea. By the time
it reaches Puerto Rico, the temperature and salinity of this
upper water mass has been further affected by the general and
local climate of the area through which it is passing.
Further precipitation, runoff, and evaporation from wind .and
insolation could further influence both the temperature and
salinity. Typical ranges of these parameters seen in the
Tropical Surface Water are salinities varying from 33-36
(with excursions both above and below these values), and tem-
peratures from 25°C to 29°C. This water mass may attain its
maximum depth and actually be wedge-shaped along the northern
Caribbean, due to the geostrophic subsidence as the water -
moves westward. However, the actual depth of the water mass,

may be influenced greatly by the atmospheric pressure and-its -

variation. Normally, the pressure changes little, with
changes of 3-6 cm of mercury in a month considered large.
However, as a tropical pressure trough moves through the
Caribbean, the pressure is severely reduced, causing the
water level to be raised, pushing the upper water mass_ to the
side, and upwelling the cooler, more saline lower water mass.
These conditions would occur in the case of a hurricane, but
also to a lesser degree during a tropical wave or a tropical
storm. The effect on an operating OTEC plant could be at
least to severely reduce its efficiency, in the case that the
plant had not already been shut down.

The water mass directly below the Tropical Surface Water
is called the Subtropical Underwater. This lower water mass
originates directly beneath the Bermuda atmospheric high
pressure zone., This high pressure zone is the atmospheric
downwelling component of the Hadley cell which gives rise to
the Equatorial Atmospheric Trough, which in turn is related
to the origin of the Tropical Surface Water discussed above.
The air and climate under the Bermuda High is warm and dry.
Also, due to the relative humidity, evaporation is great and
salinity is increased, making this water the most saline in
all the Caribbean. This water mass then descends to form the
upper portion of the thermocline in the Caribbean. The
salinity seen within the Subtropical Underwater ranges from
36.8°/00 t0 37.2°/0o. As the water rarely comes into contact
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with any diluting agent, the salinity remains quite high,
and relatively invariant. Furthermore, as mentioned above,
during conditions of low atmospheric pressure, this water
can push upward, and the very high salinity seen in the sur-
face water during these times is evidence of this water mass
having been upwelled.

The temperature range within this water mass is greater
(20°C-24°C) than the water mass above. As the heat may be
conducted upward or downward, the temperature does not
remain as invariant as the salinity. The density difference
between the Tropical Surface Water and the Subtropical Under-
water is large enough to maintain the two water masses as
quite distinct. The Subtropical Underwater moves generally
south and westward into the Caribbean, under the faster
moving, more turbulent surface water mass. As the lower
water mass moves westerly into the Caribbean, it is seen to
dilute to about 36.5°/50-36.6°/c. in the Yucatan Strait. In
the vicinity of Puerto Rico, the water moves southward
through both the Anegada and Mona Passages,. then south and
westward through the Caribbean. The core of this water mass
is frequently seen to lie at about 150 m depth in the Puerto -
Rico area.

Below this water mass lies a transition zone of indis-
tinct characteristics. The transition zone contains the
lower portion of the thermocline, and extends into the defi-

-~ nite area -ofthe cold water zone. This transition water is

a mixture of North Atlantic Central Water and diffused and
diluted Mediterranean Water. The salinity ranges about
36.8°/00, from the water mass .above it, down to about 35°/c..
The temperature ranges from 20°C to about 7°C. This transi-
tion zone reaches from about 200 m to 600 m depth. Just
below this zone lies the oxygen minimum, which many people
define as the boundary of the cold water zone in the oceans.

The Antarctic Intermediate Water is found just below
this transition zone. This water is formed at the Antarctic
Convergence Zone, about 45°-55° 1atjtude. The water tends to
be low in salinity, as it is formed'in an area where precipi-
tation far exceeds evaporation. The water mass is seen
moving northward from its area of formation, and makes its
way into the Caribbean over the moderately deep sills of the
Lesser Antilles, the Anegada Passage, and the Windward
Passage, between Cuba and Hispafiola. This water mass
generally is seen spreading from these sills out to cover
much of the Caribbean Basin. The movement near the southeast
coast of Puerto Rico could be expected to be south and west.
As the water moves northward through the Atlantic it is in
contact with higher saline water, increasing the salinity
from its origin of about 34°/.. to 34.8°/c. off Puerto Rico.
The temperature s from 6°C-7°C.
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From 800 m down to 1000 m, between the Antarctic Inter-
mediate Water and the North Atlantic Deep Water, lies another
transition zone. From about 1000 m depth and deeper the
water mass found in the Caribbean Sea has most of the charac-
teristics of the North Atlantic Deep Water. This water is
formed in the high north latitudes, and while descending both
in depth and latitude, entrains some of the Mediterranean
water, thereby increasing its salinity, density, and depth.
This water enters the Caribbean only through the Windward and
Anegada Passages. The water moves mainly westward from the
Windward Passage, but south and west from the Anegada Passage
to fill all the deep basins in the Caribbean. This water is
characterized by 4-5°C temperatures, and a salinity of
35.0°/00. After this water mass moves into the Caribbean, it
is virtually trapped, with only a small passage out through
the Yucatan Strait. The water remains in the Basin and is
slightly different in silicate content from its origin, the
North Atlantic Deep Water, found outside the Caribbean Basin.
For this reason, some people choose to call this deep, cold
water the Venezuela Bottom Water. 1In some portions of the
Caribbean Basin, this water mass is over 3000 m thick.

2.8, CURRENTS

The general circulation of the Caribbean Sea has been
described by Wust (1963), Worthington (1971), Gordon (1967).
and Perlroth (1971), among others. The Caribbean Current is
a warm westward flow which is formed from the junction of the
North Equatorial Current and the Guiana Current (Burns. and
Car, 1975), both generated by the Northeast Trade Winds.
There are seasonal variations in the Caribbean Current. Sur-
face velocities attain their maximum speed during the summer
(June-August) and their minimum during October and November.
Burns and Car (1975) reported maximum speeds along the north
coast of Venezuela of about 43 cm/sec, with a peak of
135 cm/sec. Most of the water entering the Caribbean Sea
comes through the straits north and south of St. Lucia
(Fig. 1). The main flow crosses the Jamaica Ridge southwest
of Jamaica, moves west through the Cayman Basin, and then
keeps flowing north through the Yucatan Strait into the Gulf
of Mexico, contributing to the formation of the Florida
Current (Burns and Car, 1975).

Comprehensive summaries of the water masses and surface
circulation of the Caribbean Sea have been given by many-
researchers. Most of these summaries quote the work of Wust
(1963), reproducing this author's descriptive diagrams of the
surface circulation. These diagrams are also reproduced here
as Figures 33 to 36. These figures show the tabulated speeds
and directions of the surface currents around Puerto Rico for
the months of January, April, July, and October. Tables 14
and 15 are summaries of ship drift data taken from the Naval
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Surface currents in the Caribbean Sea for the month of October [from Wyst, 12E3),

Fig. 18,
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Table 14, Surface cocrent :i;\l;; for Poerto Rico (SCUDS).

SITE: TPuerto Rleo

10 DEGREE SQUARE: )OOR
1 UECAUE SQUARE: 75
1/4 DEGREE SQUARE: 1

Total Number North East Pesultant  Resultant
Jionth  Qbscrvations of Calms Comp. Conmp. Directien Spred
1 17 1 -~0.0 ~0.4 267 0.h
2 7 [ -0.0 ~0.3 . 266 -0.3
3 7 1 0.2 -0.5 286 0.0
[ 12 0 0.2 0.4 283 0.5
5 3L 1 0.0 ~0.4 275 0.4
6 2 0 0.7 =0.1 351 0.7
7 3 1] 0.6 =0.0 352 0.6
B 13 2 0.0 -b.2 273 0.%-
9 4 o 0.3 -0,2 317 0.4
10 13 L] 0.2 ~0.6 204 0.6
1) 18 2 0.1 ~0.5 279 0.5
17 3 0 0.2 -0.3 05 0.3
SITE: Tuerto Rico
10 LLGREE SQUARE: 1005
1 DEGIEE SQUARE: 75
1/4 DLGRLE SQUARE: 2
Total Rumber North Easc Resultant Neswliant
Nunth  Ohservarions o©f Calms  Comp.  Copp. Vlrectlon- Spaed
1} 13 2 9.3 -0 n7 0.4
2 16 0 0.1 -0.2 303 0.2
3 16 0 0.1 ~0.1 293 0.1
4 10 .1, 0] -0.2 293 0.2
5 19 4 0.0 -0.3 2712 0.3
3 ? 2 0.0 -D.2 272 1,2
7 2 2] 0.0 0.2 315 0.0
8 1l 1] 0.1 -0.3 7R2 0.3
9 22 b} 0.1 -0.2 loz2 0.3
10 17 0 0.1 -0.1 309 0.2
11 12 1 0.1 ~0.5 203 0.%
12 4 o] 0.1 0.6 2406 u.0

O
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Table 15, Surlace current data for Puerto Rico (SCUDS).

SITE: Puerto Rico

10 DEGREE SQUAME: 1008
1 DEGREE SQUANE: 7%
1/4 DEGREE SQUARE: 3

Toral Hunber North East Resultant Resultant
Month  Observations of Calws  Comp. Comp.  Direckian Spred
1 11 0 0.0 0.0 85 0.0
2 13 I 0.1 -0.2 kli} 0.3
3 ] o 0.3 ~0.5 300 0.6
4 5 1 D.o 0.0 52 0,0
s n o 0.0 -0.4 275 0.4
6 4 1] o4 ~0.4 309 0.6
7 3 [+] -0.2 -0.5 24D 0.6
8 B 1] 0.5 -3 3 0.5
9 10 1 -0.1 0.4 251 0.4
10 9 0 0.0 ~0.3 215 0.3
11 9 2 0.0 ~0.4 273 0.4
ot T T SITE: Fuerto Rico
10 DECREE SQUALE: 1008
1 DECREE SQUARE: 75
/4 DECREE SQUARE: 4
Total Bumber " Morth  East Resultant  Hesulibant
Moath  Observatfons of Calis Comp. Comp. Direction Speed
1 14 /] [IN] 0.1 ok 0.1
2 13 1 0.1 -0.2 306 0.2
3 9 1] ~-0.0 ~0.1 269 0.1
4 13 2 0.0 -0.3 275 0.3
5 6 2 =0.1 -0.1 208 D.2
6 1 0 0.5 0.0 160 0.5
7 a 0 ~0.0 -0.2 264 0.2
8 11 4] 0.2 - -0.1 ain 0.2
El 15 z 0.2 -0.2 309 0.3
10 9 0 0.1 -0.2 303 0.2
11 15 z 0.1 ~0.3 281 0.3
12 3 1 ~D.1 0.0 100 0.1
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Oceanographic Data Center (NODC). These tables are repro-
duced from Lee, et al. (1978). The data show the surface
drift range as being from WSW to NW at 20 to 80 cm/sec with
NW currents of about 40 cm/sec as average. Easterly flows
have)a]so been reported (Atwood, et al. 1976, and Lee, et al.
1978).

Very few water current measurements have been made near
Punta Tuna. Burns and Car (1975) reported current measure-
ments in the southeast part of Puerto Rico. Figure 2 indi-
cates the location at which their arrays were moored. Tables
16 and 17 show the results reported by Burns and Car (1975)
that apply to this study, as do Figures 37-40. Speed direc-
tion histograms are shown in the figures. Mean currents from
2 to 15.7 cm/sec were measured at depths ranging from 100 m
to 1910 m over the three arrays. Direction of currents varied
from 001 degrees (°T) to 349 degrees (NW) including ail quad-
rants of the compass. -In Array 11 {Lat. 17°50' 53"N, Long.
65°47"' 37"W), south of Punta Tuna, P.R., a total of 2,722
observations were made at a depth of 220 m (water depth:

1975 m). The direction histogram indicates that about 20%
of the direction measurements lie between 240 and 255 .
degrees in a WSW azimuth. Approximately 75% (cumulative) of
the time, the current at this depth moves towards the western
quadrants (SW, NW). Speeds ranged form 5-35 cm/sec; 34.7% of
the time the current speed was about 15 cm/sec. For this
array and depth, the authors found the mean current to be
15.7 cm/sec towards 252°. . Progressive --vectors and spéctral
energy diagrams are shown in the Burns and Car (1975) publi-
cation for all three arrays.

Current measurements in Array 14 (Lat. 17°52'53"N,
Long. 65°54'38"W)} were made at depths of 100, 105, 810, 1905,
and 1910 m at ten minute intervals (Figures 38 and 39). Cur-
rent direction fluctuates around the compass at all depths,
the most frequent direction being towards the western quad-
rant (210°-300°). Speeds ranged from O to 30 cm/sec at the
100 and 105 m tevels, and from 0-10 cm/sec at the 810 and
1905 m depths. The records show a definite current speed pro-
file that changes with depth. For this array, the mean cur-
rent at 100 m and 105 m was 4.4 cm/sec (250°) and 4.9 cm/sec

(265°) respectively. The mean current at 810 m was 4.2 cm/sec
toward 260°,

Current statistics in Array 14A (closer to Vieques than
to Punta Tuna) show variations from Arrays 11 and 14. The
Tocation of Array 14A is at 17°58'24"N, 65°37'46"W; the sta-
tion lies northeast of stations 14 and 11. Direction histo-
grams (Figure 40) indicate that at 240 m depth, 70% of the
measured water direction was toward the northwest quadrant.
Speeds range between 0 and 25 cm/sec with a mean of about 10
cm/sec. At a depth of 605 m the direction is mostly to the
northeast quadrant at speeds ranging from 0-20 cm/sec and a
mean of about 5 cm/sec. The actual mean current at 240 m and 605 m
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was found to be 8.0 cm/sec (289°) and 5.4 cm/sec (061°)
respectively. The direction was seen to be significantly
variable at depths below 1335 m. The histograms show the
number of observations in any direction about equal through-
out the compass. Speeds at these depths are below 10 cm/sec
90% of the time.

Oser and Freeman (1969) report the installation of two
deep-water current meter arrays in the area during December
of 1968. The arrays were located between Vieques and Punta
Tuna in about 1000 m and 1500 m deep water respectively. The
generalized results of these arrays are that the upper meters
{at about 300 m depth) recorded up to 25 cm/sec as a maximum
speed, and the primary direction was westerly. A meter at
about 600 m showed a maximum speed of about 50 cm/sec, with
the primary direction indicated as northeast. The 1000 m
deep meters show northwest and east as the two primary direc-
tions, with about 15 cm/sec as the maximum speed. No other
information is given for these measurements. '

Ostericher (1967) also reports both current meter and
‘drogue measurements were made just south of Punta Tuna in
1967. The current meter data is not given in the report,
but may be in the naval archival files. The drogue data
indicate that a general west or southwest drift is seen in
the surface waters during up to six hours of observations.

: Predictions of reversals of deep water currents.in the
Punta Tuna sector and the northern Caribbean Sea have also
been reported by Atwood, et al. (1976), based on the dynamic
height method of calculation. Figure 31 in Atwood, et al.
(1976) shows the subsurface current profiles extracted from
the SP189 II pubtication. In station 41, their closest loca-
tion to the Punta Tuna site, the current profile indicates
water movement towards the northeast at a depth of about
600 m, while above 500 m and below 800 m the current direc-
tion is westward at speeds approaching 52 cm/sec (1 kt).
Station 42, west of Punta Tuna, and station 40 to the north,
show steady westward flow along the water column to depths
of approximately 900 m. Geostrophic velocities, as calcu-
lated by Atwood, et al. (1976) altong a transect extending
from Puerto Rico to the coast of Venezuela (Figure 32 in the
original publication), indicate an eastward flow in Jdune
1972, between Lat. 17° and 16°N, at speeds reaching above
20 cm/sec in the near surface waters and 5 cm/sec at approxi-
mately 500 m depth. Further to the south, the current direc-
tion is westward. The October 1972 geostrophic velocity
calculations show westward flow near the coasts of Puerto

Rico and Venezueia and an eastward flow in the center of the
Caribbean Sea.

Ekman currents analyses were made by Bretschneider

(1977) for all the proposed OTEC sites; this is a comprehen-
sive work in which calculations have been performed, taking
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into consideration wind speeds, design wave heights, signifi-
cant periods, and depth intervals down to about 150 m.
Bretschneider's calculations also indicate wind drift current
flow reversals below 100 m depending on sea state. Velocities
ranged from 78.98 cm/sec at the surface (for a 100-year excep-
tional hurricane) to .09 cm/sec at 100 m depths for sea state
4 (wind speeds of 17 knots, 5-ft wave heights and a wave
period of 5.34 seconds). For the 100-year exceptional
hurricane there are no current reversals (east) above 350 m.

Although the above reported measurements and calculations
have been made in locations near the Punta Tuna OTEC site the
resultant variability indicates that further and more precise
monitoring of water circulation in this area should be under-
taken. The characterization of the water circutation, as
needed to evaluate the environmental conditons for an OTEC
site, necessarily entails long term observations.

2.9. SALINITY AND TEMPERATURE DISTRIBUTION

The seasonal salinity and temperature distribution in
the Caribbean Sea has been reported and reviewed by Dietrich
(1939), Wust (1963), Sturges (1965), Fukuoka (1965), Worth-
ington (1966), Gordon (1967), Perlroth (1971), Sands, et al.
(1978), Hamnski (1975), Shantey and Duncan (1972), Munir, et
al. (1978), and Craig, et al.,-(1978). Hydrographic-stations
data near the Punta Tuna OTEC site area have been reported by
Shanley (1971), Atwood, et al. (1976), Lee, et al. (1978),

?ser ?nd Freeman (1969), Ostericher (1967), and Wood, et al.
1975).

2.9.1. Salinity

Salinity profiles measurements at the Punta Tuna OTEC
site were performed by Atwood, et al. (1976). Figures 52 to
56 of their report show the salinity profiles at the OTEC
site as monitored during four cruises undertaken in September,
1975 and in January, March and May of 1976. These figures
are reproduced in this report as Figures 41 to 45. Surface
salinities lower than 34.8°/.,, were not observed at the site
according to these profiles. Also, from Atwood's figures of
the individual cruises, as well as the composite curve
(Fig. 45), it is apparent that below the salinity maximum
(100-200 m), there is little change in salinity with time,
certainly not enough change to affect an OTEC power plant.
From this observation, it is clear that the salinity of the

upper 200 m is more variable, and consequently of more concern
to this study.

The measurements of salinity discussed by Wood, et al.
(18975), show similarities with those of Atwood, et al. (1976).
The stations visited were about 5 km west of Punta Tuna. For
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the surface salinity, Wood, et al. {1975), found values of
about 35.7°/c0, 35.7°/00s 35.5°/,,, and 33.5°/,, for winter,
spring, summer, and fall, respectively during 1973-1974.
These data do not differ greatly from those of Atwood, et al.
(1976), except for the intrusion of fresh water, lowering the
salinity in the fall, as seen by Wood et al. As this is the
peak of the rainy season, the reduction is not unexpected.

Ostericher (1976) took 7 hydrocasts in the Punta Tuna
area in April, 1967. During that time, he found the surface
salinity to vary from 36.30°/00 to 36.35°/00. These values
tend to be somewhat higher than those of Atwood or Wood.

Oser and Freeman (1969) discussed their measurements of
salinity made in the Punta Tuna area in December, 1968. Their
measurements showed a surface salinity range of 34.71°/c0 to
34.81°/00o. These lower values again occurred at the end of
the rainy season, and are not unexpected. They lie between
those appearing in the Atwood and Wood studies.

Table 18 shows the summary of surface salinity values
seen by Shanley and Duncan (1972) during 1971. The overall
values range from 34.18°/0. in October to 36.00°/00 in March.
These values were measured at one of two stations south of
Puerto Rico which were visited monthly. Table 19 shows the
summary of NODC-collected data (Munier, et al., 1978) from
1953-1968. (Appendix II contains the original NODC data}).

-Munier shows the surface salinity vranging from 33.51°/ceo in

August of 1967 to 36.45°/00 in April, 1953.

Figure 46 graphically shows a seasonal summary of both
Shanley and Duncan (1972) and Haminski (1975). Although the
high values that have been measured over the years do not
vary much seasonally, the low values have been measured as
low as 25°/00, due to rainfall, runoff, and source-water
dilution by the Amazon and Orinoco Rivers.

The value of the depth of the salinity maximum, which
cccurs within the core of the Subtropical Underwater, gives
an indication of the water mass structure. This water mass,
usually Tocated close to the thermocline, has the highest
saltinity in all the Caribbean, regardless of depth. Again,
Tables 18 and 19 give the values of this salinity maximum,
with their observed depths. The total range seen for all
these measurements is from 36.88°/cc t0 37.14°/0o. The
salinity may not actually have changed to the extent indi-
cated, as the inability to locate the absolute maximum is
probably the cause for the variation. The depth range of
the maximum is more apparent, with the l1isted values ranging
from 100 m to 187 m. This variation may be another manifes-
tation of the inability to locate the exact maximum, but the
depth is also related to the atmospheric pressure above the
water: Jlower pressure tends to draw the lower water closer
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Table 18

Summary of Surface and Maximum Salinity Data
Reported by Shanley and Duncan {1972)

Month Surface Salinity Range Avérage Sed Max. and Depth
Jan. 1971 35.13-35.33%/as . 37.05%/00 (144 m)
Feb. 1971 35.73%/a0 37.04°/o0 (147 m)
Mar. 1971 35.54-35.00“/°° 37.02%.0 (145 m).

April 1971 35.80-35.99%/00 36.96°/50 (144 m)
May 1971 35.96°/00 36.91°/c0 (149 m)
June 1971 35.17-35.80°/00 36.95°/,, (148 m)
July 1971 35,7200 36.93°/00 (150 m)
Aug. 1971 35.17°/ 00 36.89°/00 (121 m)
Sept. 1971 34.93%/00 36.88°/00 (164 m)
Oct. 1971 34.18-34.21%/ 00 36.91°/00 (158 m)

Nov. 1971 34.41-34.86%/ . ———

O

Dec.

1971

34.54-34.89%/.,

76
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Toble 19

Summary of NODC Nonsen Cast Solinity Data
for Puerto Rico*

Month Station Depth (m) Salinity (%) OBs.
Feb. 1960 PR-1 SFC 35.72
150 36.94 MAX .
4505 34.97
Mar. 1955 PR-2 SFC 35.78
141 37.01 MAX .,
1818 34,99
Apr. 1953 PR-3 SEC 36.45
123 37.01 MAX.
2610 35.03
May 1962 PR-4 SFC 35.96
100 36.93 MAX.
1986 35.14
— Avg. 1967 PR-5 SEC 33,
187 36.95 MAX .
3876 34.98
Sept. 1963 PR-& SFC 34.46
" 150 36.90 MAX.
3936 34,97
Oct, 1984 ‘PR-7 SFC 34.39
160 36.97 MAX .
4651 34.97
Nov. 1962 PR-8 SFC 34.42
114 37.14 MAX .
1092 24,94
Dec. 1968 PR-9 SEC 34.78
100 26.90 MAX .
1984 34.97

*After Munier, et, al. {1978).
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to the surface, exposing more of the higher salinity water
to surface conditions.

2.9.2. Temperature

Some upper water temperature measurements have been made
in the northern Caribbean Sea near Puerto Rico, but not many.
The temperature profiles for the oceanic area near the Punta
Tuna OTEC site are shown in Appendix B. These profiles are
constructed from NODC computer data-listings up to 1977.
Figure 47 indicates the geographical sectors, divided into
5-minute squares, in which the area was partitioned to con-
struct the composite temperature profiles in Appendix B.

An analysis of the surface temperature range from these
profiles indicates the minimum recorded value was 24.7°C,
seen in February, 1971 (Square 14), and the maximum recorded
was 30.7°C, seen in September, 1971 (Square 10). In that year
the surface temperature varied by 6.0°C. -

Figure 48 shows the NODC data processed and averaged by
0DSI (1977). The average surface temperature usually varies.
from slightly more than 26°C in October. This implies an
average annual variation of only about 3°C.

Table 20, after Craig et al. (1978), tabulates an
observed temperature for each month of the year. The data

. source extends from 1953 to 1968. Again, ‘the 1éw vValue is - =

seen in February, but the highest value is seen in September.
Another fact seen in this table is that the temperature
maximum does not always occur at the surface, but may actually
be seen up to 50 m below the surface. Table 21, showing
typical temperatures reported by Shanley and Duncan (1972)

has similar trends, with the highest temperature seen in
September, and lowest in March. The maximum temperature fre-
quently occurred at the surface, but during the cooler, winter

months, the maximum was often as much as 50-70 m below the
surface.

In the Caribbean Sea, near Punta Tuna, the top of the
thermocline is usually found between 80-100 m. The bottom of
the thermocline usually is located about 260 m below the
surface. Atwood, et al. (1976) indicates that a wedge of
warm water is always found in the northern Caribbean Sea.
They conclude from the data that:

"The 25°C isotherm lies at about 100
meters, with small durations. This
ensures a thick warm surface layer
which is accentuated in the summer
months by an increase in temperature
of the water above 100 meters to as
much as 29°C."
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Month
Feb., 1960
Mar. 1955
Apr. 1853
May 1962
Aug. 1967

Sept. 1533
Oct. 1964
Nov. 1962
Dec. 19683

Table 20

Summary of NODC, Nansen Cast Temperature Data
for Puerto Rico*

Station

PR-1

PR-2

PR-3

PR-4

PR-5

M}R_é

PR-7

PR-8

PR-G

Depth (m)

SFC-
55

1000,

SFC
20
1000

SFC
1000

SFC
993

SFC
1000

SFC
24
1000

SFC
1000

SFC
45

SFC
10
1000

*After Craig et al. (1978)

82

Temp. (°C)

26.57
26.80
5.28

25.00
25.02
5.21

26.16
5.53.

27.33
5.13

28.37
5.21

28.67
28.80
5.18

28.54
5.20

28.59
28.67
5.56

- 27.78
27.81
5.27

(T

21,

19.
20.
22.

23.

23.

23.

23.

22,

- ce)
(Surf.-1000 m)

29

79

63

20

16

49

34

03

51

0BS

MAX.

MAX.
MAX.
MAX.

MAX.

MAX.

MAX.

MAX.

MAX.
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Table 21

Typical Temperatures of the Caribbean Sea, South of Puerto Rico

Month

January
February

March

April
May

June

July
August

September

October
November -

December

Surface Temp.

after Shanley and Duncan (1972)

(°c)

- 26.
25.
25,

26.

27.

27.

27.

28.

28.

28

36
St
82

20
70
77

82
21

.09

17

.03

27,40

Max., Temp.
(°C)

26.
25.
25.

26.

27

" 27.
28.
29.

28.
28.
.84 (49

48 (74
91 ( O
88 (73

21 (10

70 (0
27.

77 {0
93 ( 9
21 (0

09 ( 0

17 (0
03 (0

83

m)
m)

m)

m)

1000 m Temp.
(°C)

5.
5.

5.

5.

52
59

.31

.44
.35
.35

.48
.51
.58

51

53

{ T Surface-1000 m)
{°c).

20.84
20.32
20.51

20.76
C#3s
22.42
1 22.34
22.70
23.51

22.66

21.87



3

2.9.3. Mixed Layer Depth

This_ parameter is important both to design engineers and
to environmentalists. The designers must use great volumes
of water to run the power plant. The plant intake openings
will have some non-zero vertical dimensions. The designers
must know to what depth they can reach to maintain the same
surface water characteristics, with little or no chance of
the intrusion of subsurface water to reduce the thermal effi-
ciency or to change the water chemistry in other ways. The
environmentalists are aware that the upper mixed layer is
usually identified with the Tropical Surface Water, the upper
water mass in the Caribbean Sea. This water has certain
ranges of temperature, salinity, and light transmission.
Also, many organisms spend much of their 1ife in, or reacting
to, this water mass. If this water mass is altered unnatu-
rally, by the presence of one or many OTEC plants, this may
affect the natural balance between predator and prey, or
between flora and fauna, in ways we cannot even begin to
understand.

The actual definition of Mixed Layer Depth {MLD) varies
from person-to-person, group~-to-group. Molinari and Chew
(1979) define the MLD as "the depth to the center of the first
depth interval in which the temperature changes by 0.3°C."
This definition is very tight in terms of temperature, but
leaves much room for ambiguity in the definition of the other )
words-used. = Sands, "¢t al.-(1978) on the other hand, uses a-
definition that is easier to understand and use, but not as
thermally restrictive. Sands says that the MLD is the depth
where the temperature drops 1C° from that of the surface
value. Unfortunately, the latter definition could result in
a great loss of thermal efficiency in an OTEC power plant.
The MLD may also be defined in terms of salinity instead of
temperature (Lee, et al., 1978).

Using the thermal criterion of Sands, a drop of 1C° from
the surface value, we can whow how the depth of the MLD has
ranged over the years, using the historical data of 0DS1I
(1977). The criterion of a change of 1C° is not difficult to
Justify, since usually the temperature is invariant with
depth to the lower 1imit of the MLD. At that point the tem-
perature undergoes a great change within a small vertical
distance overcoming both the 0.3C° and the 1C° criteria at
about the same depth.

Figure 49 shows the results of the data compiled by 0DSI
(1977). Shown in the figure are the most probable values and
the maximum and minimum values seen in the literature. The
general trend is for the maximum depth of the MLD to be
greater in the winter months, and then tc rise in the spring
and summer. The late summer and fall months are times of
water mixing with severe storms occurring most frequently
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during this time, but again, the MLD starts to show a decrease
toward the winter values.

2.9.4. Thermal Resource

Although this parameter is discussed last, it is the
single most important parameter in an OTEC power plant. The
plant is designed to maximize efficiency depending on the
value of the thermal resource, and how the thermal resource
changes throughout the year.

The thermal resource is the heat energy available between
the surface mixed layer and the deep, cold water. Usually,
the practical definition of the thermal resource is the tem-
perature difference (Delta-T), in Centigrade degrees, between
the surface water and the water at 1000 m depth.

Many authors have discussed this parameter directly
(Atwood, et al., 1976; Wolff, 1978; Sands, et al., 1978, and
0DSI, 1977). As most of the authors tended to use the same
sparse data, and ODSI compiled the results, Figure 48 shows
the values discussed by ODSI. In the figure, the average
values of the thermal resource {Delta-T from surface to 1000 m)
are given for each month. The values for the Punta Tuna area
range from about 20°C to about 23°C throughout the year,

Tables 20 and 21 show the observed 1000 m depth tempera-
ture both for :the-Craig, et alx (1978) computation, and for
the Shanley and Duncan (1972) data. 1In the Craig data, the
1000 m temperature varied by less than 0.40°C over 15 years.
The Shanley and Duncan data show a variation of less than
0.30°C. These small variations may be real, or merely mea-
surement errors, but both confirm that the Thermal Resource
will tend to vary with the surface temperature, with little
apparent change in the cold water temperature. This is also
shown in Figure 48, where the thermal resource seems to
follow the surface temperature values. Therefore, the sur-
face temperature itself may be a good indication of the
available thermal resource.
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3.0. MARINE BIOLOGY
3.1. INTRODUCTION TO MARINE BIOLOGY

The scope of this section is to relate the marine
biota to the presence and/or operation of an OTEC power
plant in the northeastern Caribbean based on the available
historical information.

Margalef (1971) compares the Caribbean and the Gulf
of Mexico (the American Mediterranean) with the European
Mediterranean with regard to productivity. He mentions
that even though with the few available data, it seems
that the American Mediterranean is more productive than its
old world counterpart, and that its resources are under-
exploited. However, as determined mostly by C-14 uptake
tests, the primary production in the Punta Tuna area is
only 80 mg/m2 day, making it one of the lowest areas in
the Caribbean.

There is not much biological information from the
proposed site of the OTEC plant, near Punta Tuna, Puerto
Rico, or the surrounding area. However, the most impor-
tant biological characteristics of the area closest to
Punta Tuna will be discussed. Also, as the oceanic con-
ditions for the . OTEC plant require being at:least_-3km .
from shore in tha* area, and being over at least 1000 m
deep water, we would expect predominantly open ocean
water, however, there still should be some coastal species
present, at least in the upper waters.

Cabo Mala Pascua, located about 3 km west of Punta
Tuna, was the site of an environmental study undertaken
by the staff of the Puerto Rico Center for Energy and
Environmental Research (formerly the Puerto Rico Nuclear
Center). The report from the Cabo Mala Pascua study
discusses the biological information related to physical,
chemical, and geological parameters, zooplankton, benthic
invertebrates and fish studies, and plant associations
(Wood et al., 1975). Although this study did not consider
conditions in water much greater than 300 m deep, much of

their relevant information will be discussed within this
review.

There is no doubt that an OTEC plant would produce
some kind of disturbance in the ecological pattern of any
site area. However, some people believe that this type
of activity would have 1ittle effect on the biota. 1t js
difficult to predict what would happen or how serious any
alteration of the biological system would be, were an OTEC
plant to be located or operating in an area. There is
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very little information that is known about the biology
of the prime Puerto Rico OTEC site. Nevertheless, this
report shall attempt to summarize and evaluate the avail-
able information. Only after several years of research,
both before and after the existance of the OTEC plant,
will anyone actually know the effects of such a perturba-
tion on the biological environment.

As an OTEC plant will be both in deep water and also
relatively near shore, this biological section will deal
with both the nearshore and open ocean environments.
Furthermore, the various subsets of the oceanic biota
shall be considered, where applicable, such as: primary
production, phytoplankton, zooplankton, benthos, and fish.

3.2. BIOLOGICAL ENVIRONMENT
3.2.1. Nearshore Life

'3.2.1.1. Productivity

Margalef (1971), in his paper related to the pelagic
ecosystem of the Caribbean Sea, stated that cruises and
surveys in this area have been insufficiently coerdinated
and have rarely been repeated frequently enough to give a
fair.idea of-the yearly cycle,-and much less of the dinter-
annual changes.

In the Gulf of Cariaco, northern Venezuela, in the
Caribbegn Sea, the extraction of fish approaches up to
5g C/m /gear‘with a primary production of the order of
800 g C/m%/year (Margalef, 1971).

In regard to the euphotic. layers, the circulation of
the American Mediterranean can be described in an over-
simplified form as an anticlonic gyre {Wust, 1964; Bogdanov,
1965). Figure 50 shows data on geopotential topography
summarized and based on Duxbury (1962) and Gordon (1967).
The areas of low topography, (areas where dense water
approaches the surface) have been striped, and the areas
of high topography (where nutrient poor water of low
density accumulates) are cross hatched. As we can see,
Puerto Rico is located far from the nutrient rich water
masses located in the southeast Caribbean.

It is known that areas of high fertility may also be
associated with the discharge of rivers. A river as Targe
as the Mississigpi contributes high amounts of phosphate
(2 to 16 mg P/m3 on the surface); a great number of fresh
water diatoms (over 1000 Melosira per ml), and huge amounts
of detrital chlorophyll. “The observed increase in plant
biomass is in great part due to the augmented productivity
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of local marine populations (Thomas and Simmons, 1960;
Simmons and Thomas, 1962). It is important to mention
that in Puerto Rico there are no large rivers. Although
the effluéent from the Amazon and Orinoco {(both in South
America) probably reaches the Puerto Rican shores, enough
time has elapsed to consume all the excess surface nutrients.

Some values of the primary production in the Carib-
bean, as determined by 14-C uptake, are shown in Figure 51.
This method gave figures between 25 and 50 g C/mz/year.
Cell counts fall mostly between 5 to 15 cells/m¢ {Hulburt,
1963, 1966, 1968), and pig?ent concentration between 0.05
and 0.3 mg chlorophyll a/m°. Phytoplankton extend to
retatively major depths; diatoms are represented primarily
by only those species associated with ciliates, such as
Chaetoceros coarctatus. There are also sizeable populations
of coccolithophorids, dinoflagellates and blue-green
Oscillatoria (Hart, 1959, Ivanov, 1966).

3.2.1.2. Phytoplankton

There is no published information on the phytoplankton
of the coastal waters of Puerto Rico, particularly at the
benchmark site. Nor are there any specific data on marine
productivity. However, considering some available infor-
mation from the Punta Tuna site, we can speculate on the
actual conditions at this area and the possible changes
that would occur if an OTEC plant were established in this

" region.-

The only known studies related to the phytoplankton
of Puerto Rico are on the tintinnids by Duran (1957) and
various studies of Margalef {1957, 1960). The former men-
tions and illustrates 22 different species. In the
coastal area of Punta Tuna, and towards the southeast,
facing Cabo Mala Pascua, one could find the same as in the
European Mediterranean, such as the tintinnids species of
the Stenosemella genus and other similar genera should be
found that present an outer sheath or heavy lorica. These
genera develop together with the first stage of succession
of the phytoplankton, coinciding with upwelling movements
of the water. This succession may occur around the OTEC
site due to the prodvction of an abnormal upwelling that
could bring the ocean bottom water, rich in nutrients, to
the surface. According to Margalef (1967) the Eutintinnus
and Favella genera are genuinely petagic forms which have
2 very thin and Tight sheath or lorica, which are physical
characteristics of the final stages of succession.

A great number of other genera and different species
of phytoplankton should be found, among which are dino-
flagellates like Noctiluca, which are carnivorous; Ceratium,
which has a size varying from 200 to 500u; and Peridinium,

96



! UITUS[ DUE UIS[IIN LUBWBIS - N

! jareddepy pue J3isajreg - WA
uraqqiied Yy up ‘sxeidn D-pr £q L[)sowr pavjwaaiap se| ‘vopydnpoad Lieurjad ayy Jo sanfea awog[§ btd

SImd] pue UIALG

‘galag - g @

Uy - Y ! TZ_.EE puu ._.E_hc - W

! ¥SOS PUE BADIJBJPUOY - SY ! JIwwel - M ! LI(IY - UD !
safjjioyine 0} Aa)

a3 - O
‘GOXaW JO IR pum

259 0L oSL .08 258 206 056
(H)000€-000L 4
JOlF 8 rd foith ,
" 0 mo§om.om 0.« S
g .qbom el o . .
© 0
nmu D
oSt o
g
Z
+Sl
02
s
T e * i i
_..ml\m%ovomﬁ /._/ L W [1o0¢
oS .ﬁ LR aos._._ Y 2
(INy) 001 WA (&9 P SNz _,‘
~05 + /1
+ + r /. .....x ¥ Y oSC
-0 * ‘ * # . A
AVa N /OW “NOILYXId NOGYVD e ~_/ |
j — == .r........x : -.L ) ’
oow omm DON. th oow omm oOm omm
) |
O o O O

97



e e kb

size of 200 to 250u. Furthermore, in this environment
genera such as Pyrocystis are common, which together with
the Noctiluca, are responsible for the luminescence in
tropical waters. The other important group of phytoplankton
is composed of the diatoms, with probably the most common
being: (Coscinodiscus, Rhizosolenia, Bacillaria, Hemidiscus,
Gyrosigma, Biddulphia, Asterioneila and Thalassiothrix.
There is also the Trichodesmium, a blue-green algae of
filamentous consistence, which appears in the form of

small bundles on the plankton. The appearance of these

and similar species in large quantities, caused by an
upwelling rich in nutrients, might produce difficulties in
the operation of an OTEC plant, located downstream from the
effluent of a first plant.

Reference should also be made to some common planktonic
organisms like the Foraminifera, Globigerina, Radiolaria
like Acanthometra, about 200u in diameter; coccolithophorids
of the Coccolithus genus; and finally the silicoflagellates,

which are very small like the Dictyocha that are frequently
found in the copepod's intestines.

3.2.1.3. Zooplankton

The data available on zooplankton in the Punta Tuna
nearshore region are more complete than the phytoplankton
data. Estimates of the abundance and diversity of zoo-

plankton .in the surface waters along the eastern portions

of the south coast of Puerto Rico (Fig. 52), including the
Cabo Mala Pascua area (3 km SW of Punta Tuna), are reported
in Wood, et al. {1975). About 39 species of copepods were
identified. Also, the total number of copepods, chaetog-
naths, larvacean, veliger larvae, caridean larvae, brachy-
uran larvae, cirripede nauplii, number of fish eggs, holo-
plankton, and meroplankton were counted (number/m3),

According to the above authors, seasonal changes 1in
the abundance of the total zooplankton at any station
(Fig. 52) or among all samples were within the same range
(Table 22). The highest concentrations occurred 1in
December. These large densities, however, probably
represent the typical patchiness among tropical zooplankton
communities in the coastal waters around Puerto Rico rather
than a recurrent seasonal pulse, since the 959 confidence
intervals from each station overlap (Table 23).

These fluctuations in density refer primarily to
holoplanktonic organisms (permanent plankton) since they
amounted to, in most cases, 60 to 90% of the total zoo-
plankton. Meroplankton or temporary plankton formed 3 to
27% and were more numerous during April and August. The
dominant meroplanktonic groups were prosobranch veligers
and caridean larvae (Table 24).
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Table 24

Total number of holoplankton (number/m3)

knfgcy

Nearshore Replicate Tows

Nearshore Tows

Offshore Tows

Stations Stations Stations
Date 2a 2b 2c 1 2 3 5 4
220273 93 303 400 559 267 544 182 237
230573 678 662 . 755 455 698 630 521 456
130274*  347/70 . 471/84 388/98 492  402/84 352 262 336
230474 761 543 530 314 611 197 586 473
220874*  278/452  48B3/536  455/371 532 405/453 719 320 209
141174° 743 738 896 - 792 - - -
121274 1330 1099 1315 - 1248 - 573 -
Total number of meroplankton (number/m3)‘
Nearshore Replicate Tows - Hearshore Tows Offshore Tows
Stations Stations Stations

Date 2a 2b 2c 1 2 3 5 4
220273 6 17 22 22 15 21 9 7
230573 108 95 72 43 91 59 35 46
130274* 97/8 45/1 42711 53 62/6 14 56 32
230474 95 55 . 93 131 81 72. 87 80
220874* 56/110 1017122 87/48 148 81793 144 37 62
141174° 108 155 138 - 134 - - -
121274 68 53 51 - - 37 -

58

*Midnight/Midday; °Midnight
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Fish eggs were abudant in this area, forming 2 to
40% of the total zooplankton (Table 25). The largest
density 229/m3, was observed at Station "5" on February
13, 1974. Fish eggs were more numerous throughout the
area on this date than any other, averaging 177/m° and
forming 31% of all zooplankton collected. Most of the
eggs were round and 0.5 to 2 mm in diameter. Oblong
eggs were also common. It is not reported which groups
of fish are represented by most of the eggs.

Diurnal changes in zooplankton density were large
in February and small in August. A detailed account of
the magnitude of fluctuations among several groups was
reported earlier (Youngbluth, 1974a and 1974b). Nearly
all organisms were much more numerous at night during
this period but only two groups, the larvaceans and the
gastropod larvae, were observed in greater numbers at
night during August (Table 26)}. Sea state and sky condi-
tions were similar during each period, i.e., caim and
moonless at night, 1ightly choppy and sunny during the
day.

Copepods formed 60 to 85% of the zooplankton commu-
nity, with 39 identified species. The report did not
have a detailed examination of species abundance at al}
stations, however, one sample from their Station "2" for
each period was selected for study. Table 27 shows the
species most numerous, “those commonly observed, "and
others occasionally observed.

Table 28 shows the total number of chaetognaths.
This group was very numerous during February 1974, but
not many different species were found. The variety and
abundance of zooplankton observed at the Cabo Mala Pascua
site, both nearshore and offshore, were similar throughout
the year. Diurnal changes in densities varied. Large
increases in nearly all groups were observed at night
during February. In August no obvious differences were
noticed except among larvaceans and prosobranch veligers.

Copepods always dominated both the zooplankton
community and the holoplankton (Table 29). The larvae of
gastropods and decapods (Table 26 and 30) were the major
meropianktonic organisms. The largest proportion of
meroplankton occurred during April and August. Fish eggs
were very numerous during February 1974 (Table 31)..

Because the nearshore area where the above research
was performed is located near the prime future OTEC plant
site, we can presume similar conditions in the coastal
waters of Punta Tuna. Any change in the food chain
produced by the upwelling that would occur in that region
would surely change the quantity and distribution patterns
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Table 26

Total number of larvaceans (number110m3)

Nearshore Replicate Tows Nearshore Tows Offshore Tows
Stations Stations Stations
Date 2a 2b 2c 1 2 3 5 4
220273 26 91 250 234 122 333 244 278
230573 1024 1113 1389 437 1176 381 583 564
130274 137/27 479/48 529/23 84  382/33 143 57 138
230474 511 189 242 245 314 105 294 324
220874*  355/116  718/112 486722 103 520/83 129 70 125
141174° 266 115 151 - 178 - - -
143 -

121274 330 510 632 - 490 -

~“Total number 6%’véi?gef-férvaeVinumbér/10m3)

Nearshore Replicate Tows Nearshore Tows Offshore Tows
Stations ‘ Stations Stations
Date 2a 2b 2 1 2 3 5 4
220273 20 22 110 140 50 136 26 . 66
230573 568 414 431 91 471 65 140 40
130274*  151/81 527/65 112/113 148 263/86 135, 458 214
230474 496 378 669 978 547 365 578 534
220874*  287/289  488/393  554/192 427 4427291 775 132 - 207
141174° 284 185 231 - 233 - - . -
278 -

121274 489 325 316 - 377 -

*Midnight/Midday; °Midnight
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Table 27

o Copepod populations observed at the Cabo Mala Pascua Site.

Species usually most numerous ( 5 individua]s/m3)

_ Clausocalanus furcatus
9 raracalanus spp. (P. aculeatus, P. crissirostris, P. parvus)
' FarranuTa gracilis )
Oithona spp. (0. plumifera, 0. spp.
Acartia spinata
Temora turbinata
Calanopia americana

Species commonly present {observed on 5 or more sampling periods)

Corycaeus spp. (C. giesbrechti, C. pacificus, C. speciosus)
Undinuta vulgaris
- Calocalanus pavo
Q tuchaeta marina
g T - Nannocalanus minor -
Labidocera spp.
Candacia pachydactyla
Mecynocera cTausi
‘ Acrocalanus Tongicornis
O Temora stylifera

Species occasionally present

Oncaea spp. (0. mediterranea,
Corycaeus spp. (C. subuTatus,
a Pseudodiaptomus cokeri
) Calocalanus pavoninus
Scolecithrix danae
Lentropages furcatus
Eucalanus spp.
' Lucicutia flavicornis
D Miracia efferata
B CopiTia spp.
Sapphirina spp.
Monstrilla spp.
MacroseteTla gracilis

Phaenna spinifera
9 p

venusta, 0. spp.)
Spp. )
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Table 30

Total number of caridean larvae (number/lOma)

Nearshore Replicate Tows Nearshore Tows Offshore Tows
Stations Stations Stations
Date 2a 2b 2c 1 2 3 5 4
220273 6 59 44 3r 37 45 19 15
230573 156 52 96 173 101 370 vt 26
130274* 618/1 24671 185/1 321 3%0/1 4+ 57 41
230474 99 47 73 69 73 192 42 114
220874*  137/421 316/+ 134/148 912 196/190 301 . 109 198
141174° 213 277 320 - 270 - - -
121274 49 70 49 - 56 - 83 -

Total number of brachyuran 1arvae (number/10m3)

Nearshore Replicate Tows Nearshore Tows Offshore Tows
Stations Stations Stations

Date 2a 2b 2c 1 2 3 5 4
220273 21 - 54 34 + 36 15 4 4
230573 122 155 120 109 133 33 + 13
130274* 23771 48/1 119/2 26 13571 + 31 7
230474 99 32 v + 44 12 21 18
220874* 347231 43/178 50/111 52 43/173 11 128 55
141174° - 36 254 115 - 135 - - -
121274 24 " 46 + . 24 - 23 .

*Midnight/Midday; °Midnight
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of the previously mentioned zooplankton, as more phyto-
plankton would be available for grazing upon.

Thg total biomass of zooplankton (Table 32) expressed
in mg/m°> was calculated as wet volume (Ahlstrom and
Thraikill, 1962). Wood et al., (1975) mentioned that this
estimate is subject to considerable error and should be
viewed only as a rough measure of standing stock. The
measuremenis were reproducible but are undoubtedly biased
toward higher than actual values by the variable proportion
of interstitial water and detritus.

3.2.1.4. Benthos

The effect of an OTEC plant on the benthos of Punta
Tuna is relative, and will depend on the type of power
plant that is established. If the generating plant is
shore-based, there is no doubt that it will influence the
benthic organisms along the shore, both flora and fauna.
However, if the power plant is afloat more than 3 km from
Punta Tuna, the resulting environmental changes to the
benthos will be minimal for the inhabitants in the zone
between the shore and the 100 m isobath, except where a
power line may pass.

Yoshioka, in Wood et al., (1975), reports the results
of benthic and fish studies conducted at the Cabo Mala
Pascua site. Most of the effort invlolved -mapping-and
describing major benthic communities, in an area located
between the shore and the 20 m isobath, off the coast from
Punta Tuna to Punta Viento (Fig. 53). Macroinvertebrates,
algae and fishes were observed at selected stations.

Tables 33-36 1ist the species observed and collected during
these studies. Of all these species, probably those most
affected by a shore-based OTEC plant would be the following:
the zoanthid Palythoa, an encrusting organism, as well as

the gorgonians, coral sponge and fish species as observed

at Station "S-12" (Fig. 53), which are mentioned in Table 34;
Caulerpa, Udotea, Halophila and Halimeda, as observed at

Stations "S-2" and "S5~3"; and in the area -between the 10 and

.20 m isobath at Station "S-10", a decrease of organisms

typically associated with hard substrates, which includes
Montastrea cavernosa, a hard coral, and various species of

sponges such as Callyspongia vaginalis, Haliclona rubens,

Verongia longissima and iIrcinia strobilina. Also, changes
in distribution could be produced among the fishes of
this region (Tables 33-34) but they would not be as marked

as in the case of the sedintary invertebrates and the
aforementioned plants.
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Table 33 (from Wood, et al. 1975).

Shoreline fishes of the Cabo Mala Pascua site

FAMILY
Muraenidae

Echidna catenata
Ophichthidae

Myrichthys acuminatus
Gobusocidae

Arcos macrophthalmus
Arcos rubringenosus
Tomicodon fasciatus
Arcos artius

Scorpaenidae
Scorpaena plumieri
Gerreidae

- Eucinostomus melanopterus
Pomacentridae

Abudefduf taurus
Abudefduf saxatilis

Mugilidae
Mugil Yiza
Labridae

Doratonotus megalepis
Halichoeres macuTipinna

Scaridae

Sparisoma rubripinne
Blenniidae

Entomacrodus nigricans
Clinidae

Emblemariopsis leptocirris
Labrisomus guppyi
Cabrisomus haitiensis

Labrisomus nuchipinnis

114
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1
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1
2
1
i _
6
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2
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1
2
10
1
7
1
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Table 33 (Cont.)

27 Feb 73 27 Feb 73
Seine Rotenone
Gobiidae
Awaous tajasica 11 '
Bathzgob1u soporator 8
Gingsburgellus novemlineatus 1
ﬁnﬂLtLoJJm thempsoni 7
Gonionellus b@leosoma 1
Balistidae
Aluterus schoepfi 1
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Table 3% (from Wood, et al. 1975).

Macroinvertebrates, algae and fish observed at

sejected stations at Cabo Mala Pascua

PLANT

KINGDOM

Phylum Rhodophyta
Gracilaria sp.

Phylum Chlorophyta

Caulerpa mexicana
Halimeda sp.
Penicillus capitatus

Udotea conglutina
Udotea flabellum
Udotea spinuiosa

Phylum Spermatophyta
Halophila baillonis

CANIMAL ¢

KINGDOM
Phylum Porifera
Agelas

Anthosigmella varians

Callyspongia vaginalis

Lhondriila nucula
Cinachyra cavernosa
GeTTiodes sp.
Haliclona rubens
Trcinia sp.

Totrochota birotulata

MycaTe angulosa
MycaTle Sp.
Reotibularia massa

UTigoceros hemorrhages

Verongia lacunosa
Yerongia longissima
verongia sp.
Xestospongia muta

Phylum Onidaria
Class Anthozoa
Subclass Octocorallia

Briareum asbestinum
Erythoropodium sp.

52
22 Aug

D DE D DG D g
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Table 34 (Cont.)

S2 $12 S8
Phylum Onidaria (cont.) 22 Aug 74 22 Aug 74 22 Aug
Eunicea laxispica X
Eunicea sp. X X
Gorgonia sp. X X
Muricea sp. X
Muriceopsis sp. X
exaura flexuosa X
Plexaura homomalla X
Pseudoplexaura sp. X
Pseudopterogorgia sp. X
Pterogorgia sp. X X

Subclass Zoantharia

Acropora cervicornis X
Acropora palmata X.
Agaricia sp.

Colpophylliia sp.

Dichocoenia stokesii

Dipioria labyrinthiformis
ipioria sp. X

Eusmilia fastigiata

TsophyTlia maltiflora

Meandrina sp.. —~ - Lo .
Hillegora sp.

Montastrea cavernosa

Palythoa sp.

Porites astreoides

Siderastrea radians

Siderastrea siderea

Stephanocoenia

Phylum Chordata
Subphylum Vertebrata
Class Pisces
Family Dasyatidae

Unid. Dasyatid X
Family Muraenidae
Gymnothorax moringa X

> 2C g € '

> € > DC D D D 2l D DE D D D >
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Tabte 34 (Cont.)

S2 S12 S8
8/22 8/22 2/13 8/22 12/12
Phylum Chordata {cont.)
Family Holocentridae

Holocentrus sp. , X X
Myripristis jacobus X : X

Family Aulostomidae

Aulostomus maculatus X
Family Sphyraenidae

Sphyraena barracuda X
Family Serranidae '

Cephalopholis fulva X X
Unid. serranid X

Family Grammistidae
Rypticus sp. X
Family Echeneidae
Echeneis haucrates X
‘Family Carangidae ' :

Caranx crysos X
Decapterus sp. X

Family Lutjanidae
Lutjanus sp. X
Family Pomadasyidae
Haemulon flavolineatum X
Family Sciaenidae ‘
Equetus sp. X
Family Sparidae
Calamus bajonado X X
Family Mullidae

Pseudupeneus maculatus X
Family Chaetodontidae

Pomacanthys para X X
Holocanthus tricolor X X
Chaetodon capistratus X
Proagnathodes aculeatys X
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Table 34 (Cont.)

Phylum Chordata (cont.)

Family Pomacentridae

Chromis cyaneus
Chromis multilineatus
Pomacentrus partitus
Pomacentrus sp.

Family Labridae
Bodianus rufus

Thalassoma bifasciatum

Halichoeres sp.
Unid. labrid

Family Scaridae

Sparisoma sp.
Unid. scarid

Family Acanthuridae
Acanthurus sp.
Family Balistidae. ..

Balistes sp.
Balistes vetula

S2
8/22
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Tabie 35 (from Wood, et al. 1975)

Cabo Mala Pascua shore collections

PLANT

et .

Phylum Chlorophyta

Caulerpa racemosa
Chamaedoris peniculym
Enteromorpha sp.
Ralimeda opuntia
Penicillus capitatus
Penicillus dumetosus
Udotea fTabeTTum
UTva Tactuca

Phylum Phaeophyta

Dictyota ciliolata
Dictyota dentata

Dictyota sp.

Padina sp. .

Sargassum hystrix )

Sargassum polyceratium
Phylum Rhodophyta

Bryothamnion triquetrum

Ceramium Sp.

Galaxaura sp.
Jania adherens

Jania capillacea
Laurencia Eap%%losa
Polysiphonia sp.

Phylum Spermatophyta
Syringodium filiforme
SEringodium sp.

alassia testudinum

ANIMAL

KINDOM

Phylum Mollusica

Class Gastropoda

Acmaea antillarum
Astraea tuber
sulla striata

22 March 1973
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Table 35 (cont.)

Plylum Mollusca (cont.)

Class Gastropoda
Cerithium veriabile
Columbella mercatoria

Diodora viriduTa
Fissurella barbadensis

Fissurella sp.
Hemitoma octoradiata
Hipponix antiquatus
Littorina ziczac
Nerita tessellata
NitidelTa laevigata
Tegula excavata

Class Pelecypoda

Barbatia domingensis
Codakia orbicularis

Phylum Arthropoda
Order Decapoda
 Suborder Brachyura’

Callinectes danae
Microphrys antillensis

Phylum Echinodermata
Class Echinoidea
Tripneustes esculentus

121
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Table 36

Species and individuals per species collected in 1/4 m

quadrat at Cabo Mala Pascua

PLANT
KINGDOM

Phylum Phaeophyta
Dictyota sp.
Phylum Rhodophyta
Amphiroa sp.

ANTHAL
KINGDOM

Phylum Sipunculida

Phylum Annelida
Ctass Polychoeta

Arabella opalina
Funice fucata
Eunice sp.

Hermenia verruculosa

Laetmonice kinbergii

Lepidonotus sp.
Lumbrinereis sp.
Lysidice sulcata
Marphysa regalis
Marphysa sp.

Nereis sp.

Nicidion kingergii
Nicidion sp.
PhyTlodoce papillosa

Family Sabellidae
Family Serpulidae

Syllis sp.
Terebella sp.

Family Terebellidae
Unid. polychaete
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Phylum Mollusca

Class Gastropoda
Columbella mercatoria

Lucapina sowerbii
Class Pelecypoda

Barbatia domingensis
Chama sarda

CoraTliophaga coralliophaga

Lioberus castaneus
Cithdphaga bisulcata
Lithophaga nigra
Unid. pelecypod

Phylum Arthropoda
‘Order Stomatopoda
Unid. stomatopoda
Order Isopoda

- Lirolana parva- -

Spaeroma walkeri
nid. Tsopod

Order Decapoda
Suborder Natantia
Family Alphaeida

Unid. alphaeid
Alpheus ambTyonyx
Pontonia mexicana

Synalpheus mccTendoni
Synalpheus Fathbunae

Suborder Brachyura
Mithrax pleuracanthus
Phylum Echinodermata
Class Echinoidea

Eucidarus tribuloides
Class Asteroidea
Asterinides sp.
Class Ophiuroidea
Unid ophiuroid

Table 36 (cont.)
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Family Amphiuridae

Unid. amphiurid
Uphiactis savignyi

hiocoma echinata
phiocoma pumila

Ophionereis squamulosa

Ophiophragmus sp.

Ophiopsila sp.
Ophiopsila riisei

Ophiothrix angulata
Ophiothrix orstedii

Ophiothrix sp.
Phylum Chordata
Class Ascidacea

Styela partita

Table 36 (cont.)
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3.2.2. 0pen QOcean Life

3.2.2.1. Productivity

Production rates in the open ocean show a general
decrease from the coastal margins to the central basin
areas (Davis, 1973). In general, tropical ocean waters
have low production rates and show little variation with
changing seasons of the year. Raymont (1963) states that
two compounds, phosphate and nitrate (together with nitrite
and ammonia to some extent) are clearly of extreme impor-
tance to marine plant growth. In general it may be said
that values of both these essential nutrients in the upper
photosynthetic zone, which is the only zone directly con-
cerned with basic productivity, are very low and fairly
constant in sub-tropical and tropical areas. It would
appear, therefore, that only a rather low production is
possible in the tropics and subtropics and that production
proceeds at a fairly steady level. The overall production,
considered on a yearly basis, may be considerably greater
than would first appear, since the nutrients are probably
more rapidly recycled at the higher sea temperature of the
tropical regions and thus pass through several cycles
during the course of a year. Nevertheless, over the trop-
ical seas of the worid, the standing phytoplankton crop
tends to be low at any one time, but as Riley (1939) has
pointed out, the thickness of the productive photosynthetic

~may be considerably greater in tropical seas, thus expand-

ing the total crop more than expected.

Most of the detailed studies on productivity in the
Caribbean Sea have been carried out in the Gulf of Cariaco
and adjacent regions, off northern Venezuela. In accord
with Margalef (1971) the primary production estimates,
based on 14-C uptake (Fig. 51), are from 600 to 1000 mg
C/m2/day in the central productive area, going down to
50 to 200 mg C/m2/day in the more offshore or peripheric
positions. These values represent something between net
and gross production (Ballester and Margalef, 1968) and
they harmonize with the limited number of studies of
inorganic carbon uptake in the Gulf of Mexico and the
Caribbean.

3.2.2.2. Phytoplankton

The portion of the water column with sufficient sun-
1ight to photosynthesize is called the euphotic zone
(Duxbury, 1971). It reaches about 100 m in depth. At
the OTEC plant site the euphotic zone corresponds closely
with the Tropical Surface Water (TSW). This water mass
may have a thickness of up to 100 m and its characteristics
are studied in other sections of this report. Almost all
the activities of the phytoplankton organisms take place
in the first 100 m of depth off Punta Tuna.
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3.2.2.3.1. In_the Water Column

No less than 450 species of phytoplankton have been
observed in the Caribbean and the Gulf of Mexico (Margalef,
1971). Undoubtedly, a catalogue of those species would be
defective 1in many aspects, especially in regard to the
smaller and more delicate organisms.

The following species are more common offshore in
stable environmental situations, and the meaning of their
presence is perhaps more ecological than geographical:
Amphisolenia, Peridinium fatulipes, P. pentagonum latissimum,
Ceratium belone, C. (furca) hireus, C. incisum, C. lunula,
(L. vultur, Pyrocystis hamulus, Lauderia annulata, Rhizoso-
Tenia cylindrus, Chaetocerus coarctatus, Hemiaulus indicus
and H. membranaceus.

Margalef (op. cit.), studying the pelagic ecosystem
of the Caribbean, stated that Chaetoceros curvisetus,
Ch. socialis, Asterionella japonica and Stephanopyxis
{SkeTetonema) costata are common species in the upwelled
water. Perhaps these species will be identified when and
if an upwelling is produced near an OTEC site.

3.2.2.3. Zooplankton

As previously mentioned, there are some surface
zooplankton data collected close to the benchmark stations
(Wood et al., 1975). According to Michel, Foyo and
Haagensen (1976), zooplankton and hydrographic data were
collected at 105 stations during nine cruises, in the
oceanic Caribbean and adjacent waters, from 1966 through
1969 (Fig. 54). However, of those stations, only two:
Station "4", cruise G-6722, and Station "1", cruise P-6911,
are closest to the proposed Puerto Rico OTEC site of Punta
Tuna. Both stations are located about 120 km to the east.

Table 37 1ists zooplankton species identified at
Station "4" (Cruise 6-6722). Three species of Siphonophora,
four species of Euphausiacea, and 18 of Copepoda were
encountered. No Chaetognatha are mentioned. Other species
identified at Station "1" (Cruise P-6911) are registered in
Table 38. There are six species of Siphonophora; 18 species
of Copepoda; three species of Euphausiacea; 13 of Chaetog-
natha; and two of Salpidae. Two species of Siphonophora:

17 of Copepoda; and one of Euphausiacea are found at both
stations. Also, Table 38 lists seven species of Thecosomata
(pteropods) encountered near the island of Puerto Rico
(Michel, Foyo and Haagensen, op. cit.)
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Figure 54. Locations of stations at which hydrographic data and

complete series of plankton samples were obtained (Michel,
Foyo and Hangensen, 1976).
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Table 37

Zooplankton species at Station 4, Cruise G-6722, situated at 17°
52' N, 64° 49' W, with a bottom depth of 4026 m and a fishing
depth of 0-1520 m on 1 December 1967 (Michel et al., 1976).

Phylum Coelenterate
Class Hydrozoa

Depth
Order Siphonophora (m)

1. Abylopsis tetragona 55

2. Diphyes bojani 0
3. Eudoxoides mitra 55 .

Phylum Arthropoda
Class Crustacea, Subclass Copeoda
Order Calanoida

1. Acrocalanus longicornis 0

55

2. Clausocalanus furcatus . . - ....-.0 .

' ' 55
335

3. Euchaeta marina 0
335

4. Haloptilus longicornis 335

5. Lucicutia flavicornis 0

55

6. Mormonilla minor 335
581

1040

1520

7. M. phasma 581
1520

8. Paracalanus aculeatus 0
55

9. Rhincalanus cornutus 335
581

1040

1520

128

Estimated
number

200
750
50

565
600

~-.-2950
2650
150 .

10

165

250
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Table 37(cont.)

Undinula vulgaris

Order Harpacticoida

11.

12.

Macrosetella gracilis

Microsetella rosea

Order Cyclopoida

13.

14,

15.
16.

17.

18.

Conaea gracilis

Farranula carinata

E. gracilis
Oithona plumifera

Oncaea mediterranea

0. venysta

Phylum Arthropoda

Class Crustacea, Subclass Malacostraca

Order Euphausiacea

1.
2.
3.

=

Euphausia americana

E. brevis
E. tenera

Stylocheiron longicorne

129

55
335

55
581
1040
1520

581
1040

1520

55

335
1520

55
335

55

335

100

150

750
5050

2650

50
6100

4750

65

200
10

1100
500

50
300
50
15



Table 38

. Zooplankton species at Station 1, Cruise P-6911, situated at 18°
; 00' N, 64° 49' W, with a bottom depth of 3008 m and a fishing
depth of 0-2337 m on 26 October 1969 (Michel et al., 1976)

Class Hydrozoa

Depth Estimated
Order Siphonophora (m) number
1. Abylopsis eschscholtzii 0 120
2. A. tetragona 65 300
Q 3. Chelophyes appendiculata 0 570
4. Dyphyes bojani 0 390
5. D. dispar 0 60
O 6. Eudoxoides mitra 65 100

| Phylum Arthropoda
Class Crustacea, Subclass Copepoda
Order Calanoida

;gl?;,,- - 1. Acrocalanus longicornis - . :. - 0 - 30
2. Clausocalanus furcatus 0 300
3. Euchaeta marina 2337 1
O 4. Haloptilus longicornis 250 100
459 420
911 30
5. Lucicutia flavicornis ) 65 300
9) 250 400
1835 1
6. Mormonilla minor 250 5400
459 600
715 96
o) 911 141
1371 50

1835 24 -
7 23
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Table 38 (cont.)

7. M. Phasma ' 250 150
- 459 .20
715 27
911 75
1371 6
1835 10
2337 3
8. Paracalanus aculeatus 0 80
9. Rhincalanus cornutus 459 : 40
715 27
911 48
1371 42
1835 5
2337 8
10. Undinula vulgaris 0 150
Order Harpacticoida
11. Macrosetella gracilis 0 30
_ 250 250
. 12. Aegistus aculeatus =~ 911 9
T T T 1371 ' 4
1835 1
13. Microsetella rosea -0 390
65 750
250 450
459 60
715 3
911 3
1371 4
1835 5
Order Cyclopoida
14. Conaea gracilis 459 160
715 156
911 327
1371 22
1835 11
2337 - 21
15. Farranula carinata 0 270
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Table 38(cont.)

16. OQithona plumifera

17. Oncaea mediterranea

18. 0. venusta

Phylum Arthropoda
Class Crustacea, Subclass Malacostraca
Order Euphausiacea
1. Euphausia brevis

2. Nematoscelis megalops

- 3. Thysanopoda aequalis

Phylum Chaetognatha

1. Eukrohnia bathyantarctica

2. E. fowleri

3. Krohnitta pacifica

4. K. subtilis

5. Pterosagitta draco

6. Sagitta decipiens

7. S. enflata

8. S. hexaptera

132

65

250
459
715
911
1371
1835
2337

250
65

250
1835

65
250
65

1371
1835
2337

715
911

1835

250
459

65

250

65

180
7150

2200
200
11

10

300

200
50

50
50
50

[ )

o N = O o

102

55
165
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Table 38(cont.)

9. S. hispida 0 20
10. S. lyra 250 30
11. S. macrocephala 715 3

911 13

12. S. serratodentata 0 30
65 20

13. S. zetesios ) 911 4

-Phylum Chordata

Subphylum Urochordata, Class Thaliacea
Order Salpida, Family SALPIDAE:
1. Thalia democratica 65 800

2. Weelia cylindrica 0 75

According to Michel, et al. (1976), seven species of

Thecomosata {pteropods) were encountered at sites farther from the

- +/QTEC :power_plant studies, but near the island of Puerto Rico. The -

seven Thecomosata species are:

Mo1lusks
Class Gastropoda
Subclass Opisthobranchia
Order Thecosomata
Suborder Euthecosomata
Family Limacinidae

1. Limacina inflata
2. Limacina trochiformis

Fémi]y Cavolinidae

3. Creseis acicula

4. Styliola subula

5. Diacria trispinosa
6. Cavolina inflexa

Suborder Pseudothecosomata
Family Desmopteridae

7. Desmopterus papilio
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Michel and Foyo (1971) identified and estimated 86
species within six zooplanktonic groups studied in the
Caribbean Sea and adjacent areas. They are listed in
Table 39,

3.2.2.3.2. Relative Abundance

Approximatley 450 species of oceanic calanoid, har-
pacticoid and cyclopoid copepods have been reported in
the Caribbean. The most numerous of the metazoan plank-
tonic groups and the most widely distributed vertically
are the copepods, with chaetognaths ranking next. Although
the number of calanoid species is far greater than that
of cyclopoids, the latter nearly equalled calanoids in
total number of individuals, with the most numerous cyclo-
poids, Farranula carinata and Oithona plumifera, being more
than twice as abundant as the top ranking calanoids,
Clausocalanus furcatus and Mormoniila minor. Harpacticoida,
the smallest group of planktonic copepods, includes the
third most numerous form counted, Microsetella rosea. The
total number of Copepoda collected at 48 stations in the
Caribbean selected to compare abundance in major areas are
shown in)Tab]e 40 and Figure 55. (Michel, Foyo and Haagen,
op. cit.

The Chaetognatha consists of 15 species prevalent in
tropical oceans, five rare bathypelagic forms, Bathybelos

typhlops, Eukronia hamata, E. . proboscidea, Sagitta megalo-. . - .-~

pthalma and S. pTanktonis, and two neritic species which
are sometimes swept into oceanic waters, S. helenae and
S. hisgida. The total numbers of Chaetognatha are given
in Table 40 and Figure 56,

Michel and Foyo {1977) stated that Euphausiacea were
inadequately sampled but they listed 15 new records for
the Caribbean Sea, with Euphausia americana, E. brevis, E.

tenera, E. gibboides, E. mutica, Nematocelis megalops,

StyTocheiron Tongicorne, S. elongatum and Thysanopoda

monacantha, among the most abundant of this group. The

relative abundance of euphausids is shown in Figure 57 and
Table 40.

The most common Thecosomata (pteropods) encountered
around Puerto Rico are listed in Table 38. They are:
Limacina inflata, L. trochiformis, Creseis acicula,

StyTioTa subula, Diacria trispina, Cavolina inflexa and

Desmopterus papilio. Horizontal distribution of total

Thecosomata for the Caribbean Sea is shown in Figure 58.

The siphonophores Abylopsis tetragona, A. eschscholtzii,
Diphyes bojani, D. dispar, Eudoxoides mitra, and Chelophyes

appendiculata {Tables 37 and 38) were identified close to

Punta Tuna, Puerto Rico. Total number of Siphonophora
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collected from the Caribbean are listed in Table 40 and
shown -graphically in Figure 59.

The salps, Thalia democratica and Weelia cvlindrica,
found near Punta Tuna, are familiar inhabitants of the
upper two water masses of the area, the Tropical Surface
Water (TSW) and the Subtropical Underwater (SUW). These
two water masses comprise the upper 200 m of the Caribbean
Sea. The total numbers of salpidae collected from the
Caribbean Sea are listed in Table 40 shown in Figure 60.

Michel and Foyo (1977) calculated affinity indices
which show two groups with an index of 0.50. An epipelagic
group consists of Sagitta serratodentata, S. enflata,
Paracalanus aculeatus, Clausocalanus furcatus, Krohnitta
pacifica, Diphyes bojani, Acrocalanus longicornis and
Farranula carinata; species having affinity only with the
preceding are Abylopsis eschscholtzii, Undinula vulgaris,
S. hispida and Euchaeta marina. A1l these species are
inhabitants of the TSW and the SUW.

Bathypelagic species comprising the second group are
Mormonilla minor, M. phasma, Rhincalanus cornutus, Conaea
gracilis, Sagitta macrocephala and Aegisthus aculeatus,
species having affinity only with the preceding are
Eukrohnia fowleri and E. bathypelagica. The bathypelagic
region is located between 1000 fo 4000 m depth. In the

Caribbean Sea this region.corresponds with the Venezuela -~ - = =7

Bott?m Water {Wust, 1964; Sturges, 1965; Atwood et al.,
1976 ).

3.2.2.3.3. Horizontal and Vertical Distribution

Michel and Foyo (1976) did not find a uniform dis-
tribution of abundance within any group or with all con-
sidered together. Instead, the greatest numbers of zoo-
plankton were collected in the Central Caribbean and in the
areas of upwelling in the Central American bight, very far
from Puerto Rico. This is best illustrated by the distri-
bution of copepods (Fig. 61, wliich also indicates a high
level of productivity in the eastern Caribbean, suggested
by earlier studies), as well as a massing of organisms in
the far west, as waters approach the Yucatan Channel.
Michel and Foyo (1977) state:

"The vertical distribution of all species except
very rare forms, e.g. Stylocheiron elongatum,
pectinata, Sagitta planctonis and
heteropods, was diagrammed to show the relation-
ship of abundance to temperature and salinity.
Examples are given in Figures 62 and 63. Many
species were found over a great range, the
Tower extremes of which cannot always be ascribed
to contamination because of the frequency of
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Total numbers of cope
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pods collected at all depths

combined at each station (Michel and Foyo, 1977).

Figure 61.
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records, and the efforts taken to wash nets and

to eliminate desiccated specimens from considera-
tion. However, the depths of major concentrations
were usually clearly delimited. Thus the copepods
Acrocalanus longicornis and Clausocalanus furcatus
(Fig. 628) live primarily in TSW and SUW, but the
former is far more numerous in surface waters than
the latter. Euchaeta marina, Paracalanus
aculeatus, Scolecithrix danae and Undinuia vulgaris

are also found mainly in the upper 100 m, and
Farranula carinata (Fig. 62D) and F. gracilis are
most numerous in sub-surface swarms. Haloptilus
longicornis is concentrated between approximately
100 and 250 m, day and night, occurring in lower
TSW but most abundant in SUW and upper North
Atlantic Central Water {NACW). Lucicutia flavi-
cornis is distributed similarly, except that it is
most numerous in TSW. Rhincalanus cornutus f.
atlantica was common over a broader range than the
others, being rare at the surface, but numerous in
TSW and SUW, while the majority were 1iving in
NACW and Subantarctic Intermediate Water (SAIW).
Others with similar extended distributions are
Macrosetella gracilis, Microsetella rosea

(Fig. 62C) Oithona plumifera, Oncaea mediterranea
and 0. venusta. In contrast, Mormoniila minor
(Fig. 62B) was one of the few Tiving in great:
abundance below SUW, common-in SAIW and extending
into North Atlantic Deep Water (NADW). The dis-
tribution of M. phasma, Aegisthus aculeatus and
Conaea gracilis is similariy deep and the numbers
fewer.

Distributional records of the more frequently
caught euphausiid species indicate both migratory
and non-migratory habits in that some occurred
over a very broad vertical range in comparison
with others. Stylocheiron carinatum and §.

suhmii were collected only in TSW and SUW, Nemato-
brachion boopis only in NACW and SAIW, and Nemato-
celis tenella in NACW. Those found in TSW, SUW
and NACW, but primarily in NACW, are Euphausia
hemigibba and Nematobrachion flexipes; those more
numerous in TSW were E. americana, E. brevis, E.
mutica, E. tenera (also caught in SAIW), Stylo-
cheiron affine, S. longicorne and Thysanopoda
aequalis. Another group 1iving mainly in NACW,
but aTso collected in SUK, consists of E.
pseudogibba, Nematoscelis megalops, N. microps/
atifantica, S. abbreviatum and T. obtusifrons.

The vertical distribution of many chaetognath
species is also extensive with however, the
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major concentrations clearly stratified. Most
Sagitta serratodentata (Fig. 63A), S. enflata
(Fig. 63B), S. bipunctata and Krohnitta pacifica
live in warm surface waters of highly variable
salinity, while S. hexaptera and Pterosagitta
draco are usually associated with the more saline
SUW. The least numerous epipelagic species were
S. hispida, a natural inhabitant of inshore
waters, and S. minima, of shelf and slope areas.
Below these are four that span the greatest
vertical range among chaetognaths in the Caribbean
from SUW into SAIW and NADW: S. decipiens

(Fig. 63C), S. lyra (Fig. 63D), S. zetesios and
Krohnitta subtilis. The remaining four of the
more abundant species were largely restricted to
SAIW and NADW: Sagitta macrocephala (Fig. 63A),
Eukrehnia bathyantarctica, E. bathypelagica

(Fig. 63B) and E. fowleri."

Michel and Foyo, {op. cit.) also stated that
changes

“in distribution of some species, primarily
copepods and chaetognaths, indicate upwelling,
sinking, or admixture of coastal with oceanic
waters. Farranula gracilis is a likely indicator
of warm, saline waters of shallow equatorial

. origin when-it-is found in the Caribbean and the

Flerida Straits. The presence of Aegisthus
aculeatus, which 1ives primarily in SAIW and NADW,
in shallower water masses, indicates upwelling as .
does Morminilla minor, if numerous in TSHW.
Chaetognath species which mark an admixture of
coastal waters when found in the open sea are
Sagitta friderici and S. temuis (not collected
during this study}, S. helenae and S. hispida.

The presence of deep water species in relatively
large numbers at unusually shallow depths
indicates upwelling, e.g., S. lyra, S. macrocephala

and E. bathyantarctica at 50, 635 and 230 m,

respectively, at a station north of Panama. There

is also the possibility that chaetognath species,
rare in the Caribbean, may be indicators of waters
entering the Sea from the North Atlantic, e.g.,
Eukrohnia hamata and Sagitta planctonis, known to

be established in the North Atlantic, E. proboscidea,
reported from southeast Africa, and S. magalop- '
thalma, from the Mediterranean and the Gulf of
Guinea. lLocations at which specimens were collected
are, in many cases, in or near the Windward and
Anegada Passages and those between the Lesser
Antilles. Intensive sampling in these areas might
well show that there are biological labels to mark
the influx of North Atlantic waters at various depths."”
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3.2.2.4. Fishes

Historical information regarding the fishes near
Punta Tuna is such that the conditions in the water
column can be understood.

3.2.2.4.1. Epipelagic Region

The epipelagic region of the oceanic zone is really
a relatively thin, offhsore extension of the neritic zone,
‘but it has permeable, water bottom, not a solid substrate.
This region is well-lighted at the surface, dimming
considerably towards its downward limit of about 200 m.
Seasonal variations are shown in certain parameters such
as temperature, light, salinity, oxygen, nutrients, and
plant and animal populations (Lagler, et al., 1962). Of
these parameters, light and temperature seem most important
in determining animal distribution. Fish inhabitants
include oceanward utilizers from the neritic zone, as
well as some mackerels and t?nas such as th? following
species: Thunnus albacares (Yellowfin tuna » I. alalunga
(Albacore), T. atlanticus {(Blackfin tuna), T. thynnus
(Bluefin tuna), Euthynnus pelamis (Skipjack tuna), E.
alletteratus (LittTe tuna), Auxis thazard (Frigate mackerel),
Acanthocybium solanderi (Wahoo), Scomberomorus cavalla
(King mackerel), and S. regalis (Cero). ATT these fishes
belong to the family Scombridae (Erdman, 1974).

Other fishes in this division are as follows: from
the family Xiphidae, Swordfish (Xiphias gladius);
Istiophoridae, Sailfish (Istiophorus pTatypterus), Blue
marlin (Makaira nigricans) and White mariin (Tetrapturus
albidus). In the Coryphaenidae, Dolphin (Coryphaena
hippurus) and Pompano dolphin (C. equisetus).

From the family Exocoetidae (Flying fishes) we have
the Atlantic flyingfish (Cypselurus heterurus) and the
Margined flyingfish (C. cyanopterus); and from the family
Anguillidae, the American eel (Anguila rostrata). Also,
Triggerfish and Filefishes of the family Balistidae
(Balistes vetula, trigger fish) and needlefishes of the
famiTy Belonidae (Strognylura spp.) could come from near-
shore. In addition to these fishes we may find different
species of sharks of the following families: Rhincodon-
tidae, Carcharhinidae, Lamnidae and Sphyrnidae; also
Mantas such as the Atlantic manta (Manta birostri).

3.2.2.4.2. Mesopelagic Region

Occupants of the mesopelagic region of the ocean
(between 200 to 1000 m) depend for food on a "rain" of
plankton, detritus, and droppings from the overlying
epipelagic region and on predatory relationships. There
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is little seasonal variation of temperature; water tem-
perature is virtually constant, ranging from 5-20 °C,
depending on depth. The pressure is high and what 1ittle
light there is, is extremely dim, and in the blue and
violet range. This region contains the uppermost aphotic
waters of the oceans and is inhabited mainly by dark-
adapted, or scotophilic, animals (Lagler et al., 1962).
Many of the fishes in this zone are black or red and move
upward to feed in the epipelagic region at night. The
larval stages of these invaders also pass into epipelagic
waters. An example of an inhabitant of this environment
is the lanternfish (Myctophidae).

3.2.2.4.3. Bathypelagic Region

In the bathypelagic region of the oceanic zone most
food gravitates downward from the waters above. There are
no seasonal variations in physical factors of the environ-

-ment; the water is very cold (between 2°and 4°C at 2000 m),

the water pressure is very great, and darkness prevails
except for the bioluminiscence arising from the light
organs of some of the inhabitants. Fishes are greatly
reduced in both number and kinds below those of the upper
waters (Lagler et al., 1962). This division is also
characterized by deep water species such as those of the
families Zeidae (dories) and Scorpaenidae (scorpionfishes).

'3.2.2.4.4.. The Thermocline and the Fishes o

Laevastu and Hela (1970) explain in detail the inter-
pretation and use of the ocean thermal structure in
relation to the distribution of fish. They stated that
there are pelagic fish which are found above the thermo-
cline, and others which frequent.the layers of the thermo-
cline, and still others which are found mainly in deep
water (Fig. 64). According to Shanley (1972) the seasonal
thermocline near Punta Tuna lies between 50 to 125 m deep.
Under these conditions yellowfin tuna (Thunnus albacares)
will remain above that depth, according to the seasonal
changes. The bigeye tuna (Thunnus obesus) which is a species
reported for the Atlantic and Pacific oceans could be
found in the thermocline layers, and the Albacore (T.
alalunga) would appear down to 50-125 m.

3.2.2.5. The Food Chain

The transfer of food energy from plants through a
series of organisms repeatedly eating and being eaten
is referred to as the "food chain." Fishes are tied to
other forms of 1ife in their environment by food webs.
Each food organism is a part of the chain of 1ife in
which a fish species is merely another 1ink or, if one
considers the relative positions of the eaters and the
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eaten, herbivores and carnivores are at different vertical
positions (trophic levels) of a food pyramid. Usually the
largest carnivore or top predator can be placed at the
apex of the pyramid, e.g., sharks such as Rhincodon typus
(whale shark), Carcharhinus falciformis (siTky shark) and
C. longimanus (oceanic white tip shark). Also there are
several species of fish of the families Scombridae,
Xiphidae, Istiophoridae, Coryphaenidae, Exocoetidae, and
Anguillidae, which have been mentioned above. Furthermore,
we should include some sea mammals such as the bottlenosed
dolphin (Tursiops truncatus), spinner dolphin (Stenella
cf. longirostris, spotted dolphin (Stenella spp.), common
dolphin {DeTphinus delphis), humpbatk whale (Megaptera
novaeangiiae)}, fin whales, rorquals (Balaenoptera spp.),
sperm whale (Physeter catodon), Cuvier's beaked whale
(Ziphius cavirostris) and piTot whale (Globicephala
macrorhyncha). ~ ATT these species of mammals have been
mentioned by Erdman, et al., (1973) and Erdman (1970).
Some species of turtles such as leatherback (Dermochelys
c. coriacea), loggerhead (Caretta c. caretta),, green
turtTe (CThelonia m. mydas), and hawksBiTl {Eretmochelys

i. imbricata), according to Rivero (1978), should also be
mentioned.

The primary link or bottom trophic level is occupied
by green plants which bind the sun's energy for further
transfer through the 1iving world. The phytoptankton,

~mainly-diatoms and flagellates are part.of this.bottom .

level. Then comes an intermediate level composed of the
herbivores, and crustaceans such as copepods and euphausids,
chaetognaths, some mollusks, and fishes. Finally there is
the highest trophic level, occupied by carnivores, in which
there may be several tiers of fish and other big animals
such as mammals and reptiles.

According to Erdman (1958, 1962) and Sudrez-Caabro
and Duarte-Bello (1961), there are many species of marine
animals which, even though they usually live their adult
life in the neritic province and in the littoral and sub-
Tittoral zones, are present at least part of their lives
in the oceanic province as larvae. Among those fish and
shellfish which are a part of the food chain are the
following: fishes such as Acanthurus spp. (Doctor fishes),
Mulloidichthys martinicus (Goatfish), Holocentrus ascensionis

(Squirrelfish), Caranx crysos (Blue runner), Hemiramphus
brasiliensis (Ballyhoo) and Gempylus serpens (Snake mackerel);

crustaceans which include Stomatopod (Fiat white shrimps)
larvae of several species of the family Squillidae;
Decapoda (larvae), zoea and megalops stages of different
species; Phyllosoma larvae of Panulirus spp. (Spiny
lobster); some mollusks of the TamiTies Loliginidae and
Enoploteuthidae; and Ommastrephidae (Squids) and Octopus
spp. (Octopuses).

153



Altering the deep water layers, at an OTEC plant site
would produce some alterations in the distribution of the
organisms in the trophic levels because some of them would
move to other areas looking for their appropriate environ-
ment. Nevertheless, the deep, cold water that is dis-
charged near the surface is rich in nutrients and contains
zooplankton which could be used by fish or plants depending
on the need. For this reason we can predict that the up-
wellipg of this cold water, along with the shadows cast by
the plants, will entice greater numbers of fish to the
area.

3.3. FISHERIES RESOURCES

Juhl (1971) mentioned that the Caribbean fishery
resources could be grouped in three mayor zones: ijsland
arc and reefs, continental shelf, and pelagic. A fourth
ctassification, midwater fishery, could be suggested
but probably even today there is not enough information
on this type of fishery.

In 1976, according to the Yearbook of Fishery
Statistics FAO (1977), 47% of the regional production
comes from island arc and reef resources. This includes
the artisanal fisheries carried out by Puerto Rican local
~fishermen.- The continental- shelf resources reached 48%  ~
of the total production of the Caribbean. It is important
to note that the most productive area, owing mainly to good
hydrographical conditions for fisheries, lies from the
Guianas to the Panama region, very far from Puerto Rico.
The pelagic resources are the least produétive, both in
volume and number of species composition, with only 4% of
the total production in 1976.

The most important Puerto Rico fishing centers close
to Punta Tuna are located in the southern part of the
island (Patillas, Maunabo, Yabucoa) and Vieques Island.
In 1978 there were a total of about 100 artisanal fisher-
men, 70 fishing boats, and 1,400 units of fishing gear in
this region. Most of the fishing activities are carried
out in the narrow shelf from Patillas to Yabucoa, and
south of Vieques Island. Very few fishermen go beyond the
20 m isobath. There are roughly 900 fishing pots, which
represent 70% of the total fishing gear of the area. The
total Tandings of fish and shellfish in these fishing
centers in 1977 amounted to at least 225,000 Kg (Fig. 65).
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4.0, SUMMARY

This summary has for its basis, the literature and
information that was discussed in this document, as well
as the very prelimianry resutls of Puerto Rico's OTEC
data-collection program for fiscal 1979. These latter
results are not presented in this report, and shall only
be referred to for confirmation or verification.

4.1. PHYSICAL ENVIRONMENT

The climate of Puerto Rico and its surrounding area
is well documented as being typically tropical marine,
with the superposition of predominant easterly winds.

As is frequently found in similar situations, the wind-
ward side of the island usually receives more rainfall,
with precipitation varying from 70-500 cm/year, depending
on location. Again, as is often the case in tropical and
subtropical latitudes, hurricanes and severe storms are
experienced in the area. There is an annual expectation
of such a storm being sufficiently near the area to be
felt, and statistically every 3-5 years, a severe storm
or hurricane may be expected to affect the weather and
sea conditions for an extended time.

Historical wave statistics dindicate: that 99% of the

time the seas are less than 3 m, and much of the time they
range from 1-2 m.

The tidal excursion around the coast of Puerto Rico
and her neighbors is small, ranging from virtually nothing
to less than 1 m. 1In spite of this low tidal range, the
tidal currents are seen as being significant components in
the coastal circulation patterns of some areas.

There have been few measurements or even attempts
to measure the water currents in the area. Some surface
results show a predominant westerly drift, with occasional
reversals. The subsurface results are even less definative,

due to the few attempts. Usually a southwesterly drift is
reported.

The salinity profile below the pycnocline (depth of
most rapidly changing density-about 200 m maximum) along
the south coast is documented fairly well. At and exceeding
such depths, the variations due to atmospheric fluctuations
are seldom seen. The upper waters are influenced by the
atmosphere, the local weather and climate, and the degree
of freshwater inflow from the major northeastern South
American rivers. This relationship is now beginning to be
understood. Typical upper water salinity may vary from
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31-37 °/oo, with 34-36 °/., most common. A salinity
maximum of about 37 °/.,,, is found immediately beneath

the surface water mass (0-200 m). Below this salinity
maximum, the salinity generally decreases to about 35 °/oo
in the nearshore deep waters around the island.

Temperature values, and the resulting level of the
thermal resource, are found frequently in the literature.
The surface water temperature usually ranges from 26°C to
29°C. A sharply defined seasonal thermocline exists during
part of the year, but the permanent thermocline, although
present, is not well defined. Typical values of the
temperature at the 1000 m depth is 6°C, with some small
variation. The thermal resource available to an OTEC
plant, using the surface and 1000 m depth values of tempera-
ture, is 20-23 C° throughout the year, except during severe
weather conditions.

The Mixed Layer Depth, or isophycnic layer depth,

~varies from virtually zero to almost 150 m deep, with the

usual range being 40-100 m, depending on the time of the
year. These values are taken from various measurements
made in the area over many years. :

4.2. BIOLOGICAL ENVIRONMENT

The productivity of the Caribbean is known to be low
due_primarily to low available nutrient-levels .in the  -- . . -
photic zone. ' ' T

Not much has been reported about the phytoplankton,
either nearshore, or in the open sea. The few exceptions
include species 1ists (up to 450 species), and a brief
description of the ecosystem near upwellings in the Caribbean.

Some zooplankton measurements have been taken both
nearshore and in open water near Puerto Rico. Seasonal
changes are seen in the nearshore waters, with most of the
variations caused by fluctuations of holoplankton. These
permanent plankton have accounted for 60-90% of the zoo-
plankton collected near shore, with copepods comprising
most of the organisms. About 450 species of copepods have
been reported throughout the Caribbean water column. The
greatest number of zooplankton were collected in the Central
Caribbean and near areas of upwelling.

Overall, the biological resource of the Caribbean is
scarcely being tapped, or understood, and therefore an
accurate assessment of the ecosystem changes resulting
from an OTEC plant being either present and/or operating
can not necessarily be assessed at this time.
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4,3. CONCLUSION

In conclusion, this survey shows that our present

level of knowiedge of the OTEC related oceanic parameters
for the Puerto Rico area is Jow. Usually, the measurements,
results, and citations used in this report were made with
other purposes in mind. Therefore, the spatial and temporal
scale of the measurements were not necessarily the most
desirable for our purposes. It is hoped that during the
next few years, this problem shall be corrected, with more

OTEC-oriented measurement programs yielding more applicable
and meaningful results.
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5.0. RECOMMENDATIONS FOR FUTURE WORK

As there are few published and unpublished data
avaitaple for the potential OTEC sites around the isiand
of Puerto Rico, the results of this study lead to two
reccmmendations; a more thorough historical data review,
and future data collection.

5.1. HISTORICAL DATA REVIEW

Although the purpose of this study was to review the
available physical and biological literature and unpub-
lished information, there may still be more data as yet
uncovered. One recommerdation is to continue to be aware
of any uncovered historical data sets that are pertinent
to the area and to OTEC.

Most, if not all, of the available temperature and
current data has been found for the Punta Tuna/Vieques
area, but a more detailed study on salinity may be re-
quired. Furthermore, the geographical area of coverage
should be expanded to include the remaining portion of
the south coast of Puerto Rico, as well as the entire
north and northwest coast. Although the physical differ-
ences measured at these locations should not vary consi-
derably, they should be documented for :the-OJEC program. - -

This report does include a biological section, but
the processing and reporting of biological results in
the 1iterature may lay behind the other data, due to
Tonger processing and interpreting time. Therefore, an
up-to-date interpretation of today's knowledge of the
biota and their dynamics in this part of the world will
probably not be available for some time. Continued 1it-
erature monitoring will help minimize the time gap.

Chemical and geological révies were not part of
this study, but certainly should not be overlooked. These
reviews should be started as quickly as possible, since
any environmental effect on the biota might well come
about as a result of chemicals used in the cleaning of
heat exchangers, or by trace metal erosion. An understand-
ing of the dynamical structural interrelationships between
the biota and their chemical environment might well pre-
dict or divert any future problems, or may suggest direc-
tions toward a more ecologically compatible design.

In summary, the following recommendations are being
made with respect to the historical data:

1. Expand the geographical area of coverage of the
literature review to include the entire south ard north
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coasts of Puerto Rico, including both the Atlantic and
the Caribbean.

2. Continue to monitor the biological literature
for updating of existing information that is pertinent.

3. Monitor all environmental studies completed in
this part of the world for any usable information.

4. Use any available satellite sea surface tempera-
ture data to enhance the exisiting data bank and to
develop better predictive capabilities.

5.2. FUTURE DATA COLLECTION

As so little applicable information is available,

the greatest thrust toward understanding the oceanic
region near Puerto Rico shall have to lie in the realm of
combining the sparse historical information with an inten-
sive data collection effort. This program must be devel-
oped at the specific benchmark site of Punta Tuna (where
the present work is being conducted), and also alorg the
remainder of the south coast and the entire north coast.
The program must address itself to the questions of,

"What effects will the ocean have on an OTEC power plant?”
and "Waht effects will OTEC power plants have on the

Possib]g OTEC scenarios include using intake water of
up to 3000 m°/sec from both the near curface and the ter-
minus of a deep water pipe, many tens of meters in diame-
ters, located as much as 1000 m deep. These two water
intakes may or may not be mixed during their exhaust cycle.
Therefore, design and environment planners must understand
the physical, chemical, and biological dynamics of the
entire weter column and the geology of the bottom. The

upper waters must be studied for mooring and stress effects,

safety, thermal resource, biofouling, entrainment, pro-
ductivity, and contamination. The mid-depths must be
studied for contamination, stress effects, and the move-
ment of the deep scattering layer. The brttom depths
must be studied for thermal resource, entrainment, nutrient
Tevels, and mooring problems. Furthermore, predictive
relationships for these and other parameters must be re-
sponsive to both real and temporal variations. These are
but a few of the considerations taken into account in the
development of the recommendations which follow:

There is a need for further data collection at pocten-
tial Puerto Rico OTEC sites to measure the following para-
meters - those considered most urgent are indicated by an
asterisk (*):

163



1. Temperature

*a) of the mixed layer, using thermometers, STD,

or XBT (daily), when possible, for short term variations.

*b) to 200 m, using recorded monitoring equip-
ment, for upper water thermal structure during severe
weather events.

*c) in the water column to 1000 m, using thermometers,

STD, or XBT (monthly). for ecological structuring and
plant design purposes.

d) of the actual sea surface and the mixed layer,
using thermomenters, STD, XBT, and satellite (whenever
the satellite data will be available) to correlate tne
satellite sea surface temperature monitoring with the
mixed layer temperature.

e) of the mixed layer, using thermometers, STD,
and XBT (weekly), for ecological structuring.

2. Thermocline depth

*a) using XBT (daily, when possible, otherwise
weekly), to anticipate discharge dynamics.

3. _Salinity _ : i o
*a) to 200 m depth downstream, at discrete depths

or with STD (biweekly), to assess the density structure
for water discharge. .

*b) in the water column, at discrete depths (monthly
or bimonthly), for ecological structuring.

*c¢) to 200 m, using recording equipment, to deter-
mine vertical movement of water masses and salinity
structure (during severe weather events).

d) in the mixed layer, at the benchmark site, at
discrete depths, (weekly), to correlate with the rain-
fall in the surface water mass at its source area
(the Amazon and Orinoco Rivers), for predictive pur-
poses.

4. Mixed layer depth

*a) using STD or XBT (daily, if possible), for
engineering design requirements.

*b) wusing recording equipment with thermister
strings, to monitor thermal resource variation during
severe weather events.
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5. Internal waves

*a) at one site in the Caribbean and one in the
Atlantic, measuring both amplitude and period, by
monitoring the temperature profile with recording
thermistor strings, to determine the effect of the
variation of the horizontal thermal structure (due
to large amplitude long waves) on intake and outlet.

6. Wave spectra surface

*a) at one Caribbean and one Atlantic site, using
a recording wave rider, to determine the long-term
wave spectra for plant and personnel safety.

7. Water currents

*a) using current profilers, (4 per day on a weekly
basis), to supplement the mrored data, with emphasis
during the tidal periods. -

*b) using moored, recording current meters at
discrete depths, to determine the stress to the plant
mooring and deep water pipe, and to estimate the long
and short-term eulerian movement of water past the
site for intake and discharge.

*a) using drogues above and below the thermocline,
(bimonthly for 2-5 days), to determine the trajectory
diffusion and pTume dynamics of the plant discharge.

9. Zooplankton

*a) at the sites and downstream, using a net of
64 micron mesh at discrete depth intervals, (2 per day
monthly), to determine the population structure of
small and medium-sized zooplankton.

*b) at the sites and downstream, using a net of
330 micron mesh at discrete depth intervals, (2 per
day monthiy), to determine the population structure of
medium zooplankton and meroplankton.

*c) at the sites and downstream, using a net of

1000 micron mesh at discrete depth intervals, {2 per
day monthly), to determine some of the structure of
the meropiankton and large zooplankton population.

d) at the benchmark site, using the above 3 nets
with larger diameter openings and longer scope, through
the entire water crlumn, (hourly for 48 hours, twice
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per year), to gather statistics describing the
patchiness of various sizes of plankton in the area.

e) using a very large multimesh net pulled through
the water at various depths in the upper waters

(bimonthly), for closer estimation of possible organ-
ism entrainment.

10. Chlorophyll

*a) either at discrete depths or by pumping through-
out the upper 200 m (bihourly for 48 hours, quarterly),
to determine the normal short-term temporal variability.

*b) at the sites and downstream, at eithar discrete
depths or by pumping throughout the upper 200 m
(bimonthly), to determine the chlorophyll distribution
for ecological structuring.

11. Phytoplankton

*a) at the sites and downstream, at discrete depths'
in the upper 200 m by net or bottle, (bimonthly)}, for
counting and identification to determine the spatiz]

distribution and species present for ecological struc-
turing.

- *b) at discrete depths in the upper 200 m (bihourly,
quarterly), for counting and identification to determine
statistics related to patchiness.

12. Nutrients

*a) downstream along the 200 m isobath, at discrete
depths, (bimon;h]x),\to determine if normal upwelling
exists, for ecological structuring.

*b) downstream in the plume from the sites, at

discrete depths throughout the water column, (monthly),
for ecological structuring.

*c) at the benchmark site, at discrete depths

(bihourly for 48 hours, quarterly) to determine temporal
variation.

13. Fish attraction

a) in upper waters from a moored structure, to

determine attraction effects of a floating pelagic
structure.
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APPENDIX A
SUMMARY OF COASTAL CURRENTS CHARACTERISTICS ALONG THE SOUTH COAST

Guayanilla - Punta Ventana Sector
... Guayama Sector _
“T 0 Budnica Sector
Ponce Sector
La Parguera Sector

Summary of South Coast Nearshore Currents
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SUMMARY OF COASTAL CURRENTS CHARACTERISTICS
ALONG THE SOUTH COAST

The offshore surface currents of the south coast of
Puerto Rico have been described by many investigators.
Pubtished reports from dift bottles studies, ship drift
measurements and wind regime analyses and observations
indicate that the main dift is in a west-northwesterly
direction as shown in Figure Al. This is the north
Equatorial current which dominates the entire Antilles.
Figure A2 summarizes in vectorial and statistical methods
the general distribution pattern of the currents on the
south coast during winter and summer according to the data
pubTished in the Sea and Swell Oceanographic Atlas of the
North Atlantic (U.S. Naval Oceanographic Office, 1969).
The figure also shows the wave regime statistical charac-
teristics during the two most significant seasons.

Close to shore, however, this general current varies
considerably, owing to the variations in depth. Surface
and water column currents are deflected and influenced by

submarine topography, tidal processes and shoreline
morphology.

GUAYANILLA - PUNTA VENTANA SECTOR - . = N

Table Al shows the range of current speed at various

- depths as found in three previous studies on the area.

The variability of the currents at different times of the
year is apparent. Minimum surface current speeds ranged
from 7 to 22.6 cm/sec, both values having been measured in
the May, 1969 study by Kamel and Hadjitheodorou. Maximum
surface current speeds are relatively more consistent,
ranging from 22.5 to 38.7 cm/sec. Speed range at a depth
of 5 meters is less variable, the greatest difference
measured on June 10, 1971 and reported in the Oceanographic
Baseline Data (1971-72) report. Maximum speed range at
depths varies significantly in contrast to the current

speed at the surface; there is a definite velocity gradient
with depth..

Kamel and Hadjitheodorou (1969) concluded from their
study that wind-drift and tidal currents are the predomi -~
nant types in the Guayanilla Bay and Punta Verraco areas.
The report of the "First Survey of the Guayanilla Disposal
Site (Area G)" Oceanographic Baseline Data (1971-72) study
indicates that wind-drift currents are predeminant since
"the total rise and fall of the tide is well under a foot
therefore, so not a great deal of tidal component to the
current would be expected." Both studies conclude that
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i
surface wind-drift current becomes insignificant at a
depth of about 1 meter.

The results of investigations performed by the
Department of Marine Sciences personnel (Herndndez-Avila
and Morelock, 1975) suggest a third possible current-
generation process: a wave-induced surface and subsurface
current affecting, mainly, the direction of flow. Table A2
of the original report (Caribtec Lab., 1975) shows results
on current speeds at surface and intermediate layers as
measured by dye and drogues methods.

The Oceanographic Baseline Data (1971-72) reported
current speeds in the Guayanilla sector ranging from
9 cm/sec at a depth of 20 m to 28.7 cm/sec at 5 meters
depth, as measured with an Ekman-Merz current meter.
Variability of current can be seen in Table F-1 (page
7.113). Range of speeds varied from 7.7 to 28.3 at a depth
of 11 meters (Table F-3 of the report) as recorded by an
in-situ current meter. drogues measured a maximum surface
speed of approximately 35 cm/sec and a minimum of 2.1 cm/sec.
(Table F~2).

GUAYAMA SECTOR

Current structure and patterns in the Guayama sector
have been reported in the Oceanographic Baseline Data

-Project (1971-72): Mufioz {1967), a study carried out by-

PRASA (1967), and Heres (1971}, reported data on currents
made by employing drifting drogues and wood blocks. The
general flow of water in all cases was. found to be to the
west at varying speeds, although variations to the east
were encountered. These studies, according to the Oceano-
graphic Baseline Data Project reviewers, were not reported
in proper form for more comprehensive analyses.

The current meter data reported by the Oceanographic
Baseline Data Project study is listed in tabular form in
Appendix F of their final report; graphs of the data are
shown in Figures GM-2 through GM-7 of the same report.
Speeds ranged from a maximum of 28.7 cm/sec at a depth of
5 meters to a minimum of 7.7 cm/sec at 20 meters depth as
recorded with an Ekman-Merz meter. Recording meters at a
depth of 11 meters showed current speeds from about 10 to
27 cm/sec. Drogues gave velocities from 35 cm/sec at the
surface to a minimum of 1 cm/sec at a depth of 10 meters.
Tables and figures of current meter data and drogues studies
are given in pages 7.113 of Vol. II of the final report.

GUANICA SECTOR

The current patterns in the Guinica sector, as inves-
tigated by Herndndez-Avila (1977, unpublished), were similar
to those at Punta Ventana, with the exception of the
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TABLE A-2
DYE AND DROGUES CURRENT DATA
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funneling effect of the canyon. Drifting drogues and dye
traces indicated that surface currents are a function of

the wind stresses from the east and southeast. The tidal
forces are observed to have an effect on the direction of
the deeper drogues as shown in the 4, 6 and 7 meters drogue-
tracks. Net mass transport in the water column was toward

the west and west-north-west. Current velocity ranged from
about 1 cm/sec to approximately 30 cm/sec at the surface.

Circulation at depths greater than 9 meters was deter-
mined to be a function of water reflection from the coast
and the tidal excursion forces. Net mass transport was
in a south and southeastern direction. FEast flow was also
dominant at intervals.

The reversal effect of the tides was observed in the
progressive vector diagrams. Velocity histograms indicated
that the velocity ranged from 1.5 to a measured maximum of
about 14 cm/sec. Mean velocities ranged from 2 to 7 cm/sec
depending on the station's location.

The data shown from this study has not been fully
analyzed as yet. Currents were monitored during the four
seasons of the year; wave refraction diagrams are in the
process of analysis, as are salinity, temperature, clima-
tological, and other dynamic parameters that have been
measured periodically. Comparisions between the current
Structure .in the same station.during two .seasons of the
year will be made.” -

PONCE SECTOR

The available ocean current measurements in the Ponce
area have been reported by Colén (1971a) of the Water
Resourses Research Institute, University of Puerto Rico,
Mayaguez Campus. Measurements were made at three different
water depths employing Hydro-Products in-situ current
meters, Model 502. The data has not been completely ana-
lyzed, at least with the methods usually employed.

Current roses are shown in Figures 1 to 4 of the
aforementioned study. Figure 1 of the Coldn study illus-
trates the frequency of direction of water flow at a depth
of 1.5 meters in station 1. Dominant current direction
was towards the north-east, east, and southeast quadrants.
At station 2 (Figure 2) the dominant direction was shown

~to be towards the north-west quadrant at a depth of 1.5

meters, although reversals towards the east were also
observed. The same pattern, but with stronger current
speeds toward the east, were found at station 3, as illus-
trated in Figure 3 of the publication. Currents seemed to
be dominant toward the southwest and east quadrants.
Current velocities ranged from O to a maximum of about
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i1 cm/sec (2 knots). Surface vectorial properties were
not observed or measured in this investigation.

Coldn (1971b) made another study at Punta Cuchara in
the Ponce area at a much deeper water depth. Varijations
of the current were immediately observed. Velocities at
this depth, according to Colén, varied from .1 to .2 knots
(5 to 10 cm/sec).

LA PARGUERA SECTOR

Surface and subsurface currents in La Parguera off-
shore and nearshore areas have been monitored throughout
the year by students and personnel of the Department of
Marine Sciences. Directions and speed patterns in this
area are similar to those found at Gudnica, Guayanilla-
Punta Ventana and at Ponce offshore-nearshore sectors.
Current divergence by submarine morphological differences
are evident. Surface speeds ranged from zero (at slack
time with no wind blowing) to a maximum of 30 cm/sec.

Surface resultant velocities vary according to the
strength and variations of the wind patterns. At night
the wind blows offshore, from the land, reducing the tidal
current velocities if the flood tide is flowing.

Figure 13 in Roberts and Herndndez (1976, unpublished)
shows the results of .a_study_performed with radiotracked
current drogues offshore La Paraguera. Two radio drogues
were tracked for an interval of four days. These drogues
were later recovered in Mona Passage, one in the El Negro
Reef complex, off Mayaguez, and the other in the vicinity
of Desecheo Island.

Coldn (1971c) installed three in-situ current meters
at different locations off the reefs near La Parguera.
Relative quantity of water and direction of flow were
illustrated by means of current roses (Figures 1 to 3 of
the report). Western directions of flow are dominant in
the Tocations closer to land: Northeastern flow directions
were found at a depth of 7.5 meters in the outer station.
Velocities of the currents ranged from 5 to 20 cm/sec.

Circulation patterns around Laurel Reef, La Parguera,
Puerto Rico, have also been specifically determined by
Glynn (1973, pages 309 to 315). Table 4 of this publication
tabulates the current speeds and directions. The resultant
vector diagrams are shown in Figure 12 of the published
paper. Maximum velocities of around 10 cm/sec were measured.
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SUMMARY OF SOUTH COAST NEARSHORE CURRENTS

Conclusions {after Herndndez-Avila, 1977, unpublished)
from the general review of the available literature on
nearshore-offshore currents of the south coast are as
follows:

A. Surface drift is a function of the relative
strength of the wind, waves and tidal patterns. There
are marked diurnal variations.

B. During daylight hours the wind direction and speed
are dominant, overpowering the ebb tidal flow or aiding the
flood tide if these coincide. The land-sea breeze effect
at night has the reverse effect: it opposes the flood
tides and aids the ebb tides.

C. Measured surface velocities during daylight hours
can reach a maximum of about 40 cm/sec toward the shore-
line owing to wind stress coupled with flood tidal condi-
tions and wave mass transport direction. Storm conditions
have not been monitored.

D. Current velocities usually decrease at night
during the flood tide to values below 5 cm/sec in an
offshore direction.

E. Surface current statistics:

1. Réﬁge: M%nimum-measured speed: .2;1';ﬁ)sez
Maximum measured speed: 40 cm/sec
Approximate mean value: 18 cm/sec

2. Dominant direction: WNW

F. Tidal currents statistics:

1. Range: Mean'Ebb: 6 cm/sec¥*

Mean Flood velocities: 10 cm/sec**

*
1]

after wind stress has been cancelled out.

* %k

1

velocities vary as a function of suyb-
marine and coastal morpho1ogic.

2. Direction of tidal flow:

Ebb tide: SSE

Flood tide: WNW
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completely negligible, but wave-induced stresses are still
a dominant effect. The variability, owing to the revers-
ing tidal effect, will affect to a certain extent the
speed distribution and flow direction towards shore on a
WNW azimuth. Wave refraction effects are still present.

M. Current speed and direction at a depth of 45
meters, 5 meters above the bottom of Punta Ventana Canyon,
as measured with an in-situ mechanical current meter.

1. Range: Minimum measured speed: 0 cm/sec (?)
Maximum measured speed: 19 cm/sec
mean speed: 3.6 cm/sec

2. Dominant Direction: ESE (mean direction) in
Punta Ventana; S and SE in La Parguera and
Gudnica during the ebb tide cycle.

CONCLUDING REMARKS

1. General water mass movement at the surface and
subsurface is in a western direction, at an angle to the
shoreline. This circulation pattern minimizes any hydraulic
back-flow from shore to the offshore areas. Mass transport
at the shoreline will be along the shore in a western di-
rection. _lLongshore current speeds ranging from 17 to
25 cm/sec have been measured at the Punta Ventana and
Gudnica shorelines. At La Parguera these currents are
usually on the order of 5 to 10 cm/sec inside the reefs.

2. Surface circulation is expected to be nearly the
same for long periods of time. This statement is supported
by the location of the coast in a constant energy environ-
ment determined by steady trade wind incidence, mean wave
~regime, and meteorological data as shown in the tables of
the text. Changes will occur during different seasons of
the year, but the wind-driven, wave-induced mechanisms
from an almost constant direction will be dominating the
surface circulation. Overall it can be concluded that
parameter variations are mainly significant during the
winter-summer seasons.
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Table B-1. liydrographic data for Puerto Rice for February, 1960.

MODC MANSEW CAST UATA

CHUMBER:  pooy

PUERTD nigo '
La¥ITuues 57 57 4
LONGITUDE: 6% 12 M
BOYYOH DEPTH: Hsh H
DATEYL  1926R-hn7-y9
WEFIB: 31 8271-nugs
TEnt SALINITY Dxviewm
{DEG CY . LPPT) ¢ TR
26 57 35,72 4,64
26,57 35,72 4,59
eb, bl 35,77 w12
2b,65% A5, nu 4,74
26,7n 35,92 g, 71
2b, 0 36,5 4,82
2b.0p 36, 10 LI
cb,56 36,49 TS
25,95 36,73 4,69
25,60 i, My a.6n
P22 36,93 4,6)
ML L] b v 8,59
#3, 02 36,94 4,8k
21,39 36, A 4,28
20,73 36, K} 4,26
18,74 36,51 8,21
3T,.TR -5 q,18
17.31% 36,39 5,12
15,27 36, 0y 3,00
14, 4y 35,91 3,465
12,88 35,65 3.82
12,18 35,53 3,20
1P, 74 35,32 LTS
v9, 61 35,17 il
®n, si 35,0 ERTY
BT.00 Ay, %% 2.8k
L7 .,.72b 3q o0 .85
86,706 34,99 LS LY
5,92 30,99 N¥2
85,63 30,9 3.9
B5,. 78 3&_9) nLih
BO, 01 3u,9% 4,52
QL kT 36,95 4,62
b, 50 LTI T 4,72
Bs 2y 34, 97 . 8BS
e, 20 33,97 4, A9
B, 24 ELICT
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1 H1H

Fios

HON1N:

S1D=+5*
DHs»rpr

NIIRATE

FELBRUARY

SILICA

1F

(UE=AT/L) (UG-AT /L) [QUFS TR

6,17

D,1s

0,16



Sltﬁi

+LFTH
ln]_
1580
1L25
1155
200
FEFIL
LAY
2320
2958
Yagn
Sq1p
S41n
up
tenyh
L1
£e5Y
an
1595

CCOoO00OMNCQUCLCOWUNDW

WODE MANBEN CASY DATA

PUERTD RICD

TEHnP

(LEC €)

SALIHITY
{rP1)
3n,98
xn.98
34,99
38,99
34,99
3a_ 9%
34,99
3a_8p
39,98
348,97
34,97
34,98
30, 98
34, 58
36,98
3o, 57
3n,8T

Table B-).

RUNRER)

OXYGEN
L)
S.nt
5,47
5,54
L,na
6,06
6,18
6,1k
b0
b,10
L1
b, 00
&, Db

6,08

6,05
57T
by12
s.08
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DEF TN
(n}
GAi
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D1y
by
LEEL]
oHnin
onay
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nRTy,

LTS
L]
L GE]
RYES
nyay
nInn
;3R]
A200
0250
c283
[ Y10
nan

pavre.

asnp
&R
DELY
a100
1213
Y2
pIng
1nan
1n3e
1104
1200
12nn
1324
fang
15¢9

Table B-2. iiydrographic data for Pucrio Rito fur.Harch, 1955,

LATITUREY
LONG] TUDE

HUDE HAUSEN CAST DATA

VOTION DEPTH: * y0%5

BUoAMEORMODNBE VMOV NONCLEGMCUON [~ L~ ]

17 Sn N
LS S W

DATEY 12%5-D3-)2

REEIDT 31 228b-uRdn
TEHP SALINIIY OXYGEM
(BEG E) T(PIY) /L)
25,00 35,78 4,22
25,44 35,78 LT
&%, Bl 35, Ay 4,24
25, k2 35,01 b
25,02 35,81 426
25,09 35,04 4,26
2a,97 35,00 4,26
25,00 35,77 n,25
25,01 35.717 4,22
24,97 35,83 b, 20
248,h2 36,15 4,48
24,39 36,32 X,49
23,35 A6, 84 3,09
22,63 37,41 3,57
22,13 ETIE T 3,56
20,23 36,03 3,51
C 19,77 36,75 3,50
18,09 36,5 3,48
16,95 36,35 3,47
in, b1 36,75 3,37
14,86 35,71 2,90
$2,77 25 4n 2,10
JL,n3 35,30 2,70
8%,05 35,0% R,b9
07,82 3n 42 2,68
¥7,39 31 ARG 2,81
oL, 85 34,85 300
05,0k 34, na 3,29
5,75 3q,06 3,39
©s,2) 34,90 3,05
85,44 34,8 X, 15
Ba, 8y 348,99 3.92
ea,51 3%, 97 H,15
BA_D 35, 0 W, 33
ua Py 35,00 q,an
[{EI-12) A5, q,au
o8, 15 4,55

35,01
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"SALYHITY - pNYGLn

(PPT) L)
" 35, m 4,14
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SITE:

DEPTH
(113}

< hwhp

nyan
aslp
owto
Bu2i
Crpe
353 1]
nosy
G50
BEATH
[ TR
(S EH
[\ N
nico
W25
01N
LR
017y
aZhn
ag22
P2SH
et
AZNE
RAGE
[ 113
fany
esni
LES ]
LY
£Ie0
Wisy
BUAA
U9
fehn
1HED
ing
1inn

Table B-3, lydrographic data for Pugrto Rico for April, 1953
HODC LAWSEN CAST DATA
FUEKTIO H1CO © HUBBERY 'R o3 HOYIN: Apuyy,
LATITUDE: 337 S3 N Stoarye
LONGLIUDEL % 20 DLz

BOYION VEPTHY u154 W

GOV CUD LU U RN LoDV AaAr VOOV e oW

K

TEnp

(DEL C
26,10
Zh, 1k
°b, 10
2&, 10
26,13
26,13
25,78

‘2%, 52
23,3%2
25,158
5,18
24, 02
2. na
2, nt
23,15
2R, s
21,a9
29,35
15,02
Ln, 5
10, nn
17,21
15,89
18,60
13,048
195D
10,90
ha, a3
u"-rl‘
07,30
Bh, U4
ws
B5,7h
05,53
05, &l
N5.A7

DATE: 198 3-fg-53
EFIDL 31 f3wn-guzp

SALINITY ODXYGEM
3 (PIrT) (ML)
36,48, ° a,7)
36,45 4,79
3h,0n 4,68
36, 4n L}
36,38 4,13
36,30 13
36,54 4,76
Ib, a2’ A
36,29 Q,73
36,29 a,73
36,32 1,8%
v 4,83

36,356 u,81
36,36 4,01
37,45 1,51
37,14 4,02
37,08 n,25
36,91 8,03
36,63 3,82
36, a2 3,83
36,4 5,15
6,70 3,0
36,30 . 3,52
36,20 4,0n
3B w3 3,13
35,n2 3,44
3.2

34 Ap 3,16
X.in

2

35,43 i, ol
1,250

x5,nn S.ab
- =T
X, 62

34, Py 3. no
4,15
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sEPTH
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[T
1329
jany
199
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115h0
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154
2320
11311

cwoounincurerov,

Table B-3.

{Cont.)

NODC MANGEN CASY DATA

PULulD RICO

LGP

(BEC C)

04,85
nn, e
o, 3%
wa 21
oo, 0y
3,89
U3, a0
53,05

23,78
03,786

SELINITY

(PPT)

[T Spe—

34,92
31,42
38,99
34,45
38,97
Xa,97
34 ap
LY
35,001
35,m1

HUNJGERY

OXYGEN
L /0y
a,a7
0,71
", 08y
D,18
S,u9
5,92
5,95
LI 1)
[
b,07
6,uS
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TIP]I B-4. Nydrographic dats for Puerto Rico fot My, 1962,

NOOC NAUREN CasT Dﬁln

STIET  PUENTY RICD TOWUNBERT PR & ppNTag nay
CATLYUDEY 1Y S5 & SInsrye
LONGITUDEY 65 b5 w nBserQe
BOY T80 BEPTHy N/A
BATE: - 1902-0%-u2 BIH
REFIDI X1 n29n-0o4)

BErTH TEng SALYHIYY  uxyGEw Pllus NYTRAYE SILica
[} {0EL ) (PPT) . (L) (O6=AT L) (UGeny /L) (UG-ay /1)
———— ——— - . erraew ———— e ——————
uay 5 27,33 35,90 :
ey 0 27,33 35,98 ST

Al 3 ELIRIT:) L1 Y]

ROIG 0 75,96 * 36,04 [T

ER2Z0 5 24,5y 36,70

UH2S 0 | 26,45 36,27 B,42

LLET T T A TS 36,31

RS S 26.m5 36,0y

UASH 0 24,0% KINT] 0,36

Burs 5 25,70 36,64

REIS D 25,7 3h, . he f,08

ey g - 25 a3 36,93 . R0, -
Men 5 25,18 - 36,93 - ’

0125 § 23,39 A6, b

158 8 21,75 36,712

DiI9% 0 jp,92 36,58 B, 25

BELH - 18, nb 36,58

B25n 8 11,12 3u, 28

LRI 15,487 3b,00

WIT U 12 6w 35,53 1,30

nypo s 12,51 35,52

RSNk § 09,92 3512

NS 0 va,ns 340,47 2,h2

nLBH 5 on,pl 34 _na

VB S pa,98 34,03
0184 0 g0 3a.60) 2,15

ouon s vb, 16 Ja,82

nien S 65,59 24 _hg

hU93 0 Dp5,33 3n_ 92 1,60

1490 0 3e o4 1.58

1946 &+ 0a,pe 35 qu
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Table

SN0 PURRTO HICO

QU"-:D‘VDVCG'J‘CﬁtﬂcMQ“WC“GMVCVCVQUC'AEU‘ODU

LATITUDE:
LONGITUDE §
BLI1Dh VLD TN
DAIE}

RLF Y

TENne

SA

(UG C)

2n. 3
26,3
28, 3%
°hL2Y
eh ik
_2U, 1%
20,601
2h, a3
27,08
27,715
°1,38
27,20
2h, 2%

b, 21

25,07
2b, 3y
23,64
23 .59
2B ua
16,7
17,06
$0,90
n, ha
ph e
13,02
12,11)
11,16
11,50
no, he
09,52
B, 76
ur, %7
b, L4
G, 15
LS, A2
1%, 21
€. 0l

B-5.

WUNE LANSEN CARY DATA

HUNBERI PR S

17 2% N

6% 35 ¢

4392 K

PR TR EATES-3 4

31 116%-00y2
i’

LINITY DQXYGEN
(PPT) . (HLsL)

[

193

144

PHLS

Hydrographic data for Puerto Rico for August, 1967

HORTHY  ApRysY

10wty
MHS=’D"

NITRATE

(UE=AT/LY (UG-5T /L)

LY

LICHTE

tufiesy 7t}



Teble 0-5. (Cont,)

NOUC KANIEN CAST DavTe

SITE:  PUuCkTO RnICO

BEPTH - TEnp SALINTTY
11} « (DEG ) irpr)

e e m———————
fioh s an, sy 38,95
1200 3 BY,S52 30,96
12486 O o, 32 38 98
1% 5 pa, 31 39,86
1hup S wa, 2y 34,97
1560 5 ba,1y 34,97
1T 0 o6 g 34,490
1756 5 04,10 34,90
enhp S DU, 0y 34 99
2172 L ta ny 34,09
25ny 5 e4.n7 X4,99
263z U 0%, nd 3,99
3nee S D4,y 3,99
3504 D pe,20 34,49
3015 0 04,22 38 98

MUMUERY PR S mgMin: AIGUST

OXYCER PHOY HY1RMIE S1LICATE
(ML) (URRAT /L) LUG-aT /L) (UG-kKY /sy

- — - e e
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S1YE:

ErTH
(L]
aRug
LLTT
raLy
[RLRRL)
LITHN]
en2n
"mid
[J71 T3
s050
turp
sy
UG
olue
uj25
LIET]
n150
By
LetD]
024t
tang
[ REINTY
LEY.T
Pang
Bunj
Dhny
R YR
iy
LY X
LT
Klty
ey
LI TR
L TITT
VY42
10y
LY
Yigy

I,-OMBL"OM

CMCGQUGMMCMEVVCMEMO

uco‘cvovovcu

Table B-6.

PUENTL H1CN

Hydrographic data for Puerto Rice for Sepiember, 1963

HUDC WANSEN CALT UATA

HUHBERY PR & HpNIH; SLPJCMRENR

LATITURED 4T 49 N 51D=*5"
LONGITUDEY 65 31 w ngs:zcu’
upTTON DEPTIN: HzA B
DLTET  19L5-09~13 116
RCE TR 31 PI50-GbuY

YEnp  SALINITY | GXYGELM PHOS  BITRATE  SILICATE
(bEC ©) (PPTY . (HL/L) . (UG-AT/LI(LE-R1/L) (uG-AT700
28,67 EUINTS .
20,67 RS

20, h% M en

2, hG a.48

e, 35,17

fa,he 35,40 4,90

eRTL 35,460 4,85

28,48 16,20 4,10

a2uv,01 Ih 24 u,07

21,55 M, uB 5,29

27,41 36,50 - 5,19

oh, 33 36,61 4,60

20,18 36,05 49, b8
2a L2 3L, 84 a,6Y%

2,40 3h, qu 9,70

23.03 36,90 4,63

20,43 16,0 4,27

20,13 36,70 4,27

10,31 b, 53 u,2%

17,09 36,13 4,23

16,75 36,28 q,22

14,31 35,00 4,17

13,45, 35,02 3.ae

11,07 3%, 48 3,09

11,3% 35,41 3. 18

ve,u4l 35,42 3,27

ud, oL 15,05 3,09

T, AL 36 Ab 2,82

67,2V 34,83 2,99

vh, 85 34,78 3.1u

oh, 3B 30, w2 . 3,25

o6, 19 KLY 3,57

By, 7! 34,90 d.ni

nh N2 3N, a LIS L]

8510 0,93 4,37

en, (A

By 10 A 99 a,.92
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HODC HAHSEN CAST DATA

SITE: FPUEHTU RICD

weryn
[413]
1154
1200
12e2
12%5)
12400
1508
A5
114
1ha)
1a52
1590
1504
1555
1667
1114
[ RET:]
1ot
1692
1949
2nan
23n3
2X15
25%
257w
dnhe
oy
31959
ISNN
3936

TEnP

" BEL )

DpocwoowogoeoCcoenrooTowCc cemocwoCcUo

L3
bit, 53
h 53
10 44
o, 38
b, 38
PLIe3
cu, 2t
i, nb
ne, 25
B, 29
ue, 26
4,25
W4, ah
AL
B3, b2
vi, 79
wy, 77

Ra

N3y, v
B3,7?
43,717
83,717
03,77
03,79
n3, 0}
h3i,ny
vl by
B3, 09

Table B-6.

NUMBER:

SALINLITY  OX

Pr1)

TLEN

(LU

196

b1
5. 11R
5,40
4,93
LT
q,91
5,27
5,19
.19
EI Y]
S.06
5.7
5, LB
5,350
6,05
b og
H,82
5,93
bL,2h
b, 21
6,45
6,25
[y
6,05
5,37
L HA
6,50
[T
b,50

{Cont.)

‘PR b

PIIOS

HOfiTH;

NIThME

SLPTENIER

SILILMIE

[UG-ATZL3 (LG AT/L) (LB-aT/L)

-

Den,
wel,

Oe%,
nes,

.
Ve,

iy,

oLy,
uin,
™y,
s,

W,
wyn,
Wb,

O3,
LI

(s,
WD,

B,
v,
v,



Table 8.7, Hydrographie data for Puerte Rico for Octaber, iéal.

RODC HAMSEN CANT UATA

51101 PUuERTIU RICH © NungEkL PR 7 hpb i OCTQULK
LATITUDEY 17 20 W S10=2"5"
LOAGLIUNESY b5 A0 W ousz'nr

BuTtOH LEPTHY 4786 H
DATE:T 19L&-1n-~2% 23H
KEFIOL 3y §3b%-un3l .

[}

YEPTH TEne SALIMTTY 7OYYGEN PHDS  “MITMATE  SILICAIL
(n1 (OEGC €Y {Pp1) tRLZL)  {UC-ATZLIGUG-4T/L) (uG-at/L)
moy 5 28,54 3,3y 9,bb

Guey 0 2b,54 30, 3n 9,20 A, fe

thwh b 28,52 30,357 5,66 2,0

LIGTURE- ST 3. 9 36,61 a, 00

tupn s 27,92 35, o4 4,02

3N 5 27,54 A5, 4,50
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Allender, J.N., J.D. Ditmars, R.A. Paddock, K.D. Saunders.

1978. OTEC physical and climatic environmental impacts:
An overview of modeling efforts and needs. In Proceed-
ings of Fifth Ocean Thermal Energy Conference, 20-22
Feb. 1978, Miami. Clean Energy Research Institute,

Univ, of Miami. pp III 165-185.

The present overview of studies of the effects
of ocean thermal energy conversion {(OTEC) plant
operation on the physical environment of the ocean
includes a review of the pertinent results of past
and contemporary model efforts in terms of their
implications for OTEC development and suggestions
for future research consistent with OTEC timetables.
Particular consideration is given to the areas of
utilization of the thermal resource, effects of a
single OTEC plant, and aggregate effects of many
OTEC plants. These potential effects include
modification of the local temperature, salinity, and
nutrient distributions, induced changes in mixed-
layer depths and sea-surface temperatures, and dis-
persal of biocides or working fluids (due to leaks).

Atwood, D.P., P. Duncan, M. Stalcup & M. Barcelona. 1976.

Ocean thermal energy conversion: Resource assessment
and environmental ‘impact for proposed Puerto -Rico

site. Final Report - NSF Grant #AER75-00145,

U.P.R., Dept. of Marine Sciences, Mayaguez, P.R. 104 p.

This report was produced as a pre-environmental/
assessment report for OTEC work off the southeastern
coast of Puerto Rico. The report evaluated present
field data, as well as historical data, where available.
The information analyzed concerned bathymetry, bottom
quality, seismicity, climate, winds, hurricanes, tides,
sea and swell, water masses, temperatures, salinity,
currents, nutrients, and oxygen. This and other
pertinent QTEC criteria are evaluated and compared
to other sites in the world.

Atwood, D.K., C.P. Duncan, M.C. Stalcup, M.J. Barcelona.

1977. Resource assessment of a high potential OTEC
site near Puerto Rico. In Proceedings of Fourth
Annual Conference on Qcean Thermal Energy Conversion,
2z-24 March 1977, New Orleans, University of New
Orleans, pp 1V 74-78.

Environmental assessment of potential OTEC sites

near Puerto Rico indicates that a high-potential site
exists off the southeast coast. The A T to 1000
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meters can be as high as 24°C (43°F) and is never
less than 20°C (36°F). The insular slope at the site
is steep, and water depths of 1000 meters exist
within 1-1/2 miles off shore. Geostrophic conditions
guarantee a warm, thick mixed layer with surface
currents in the order of 1/3 of a knot. The supply of
cold water can be considered limitless. The site is
protected from north and northeast swell, and a mild
sea state exists all year round (except during hurri-
canes). The salinity, temperature and nutrient dis-
tributions at the site are typical of open tropical

seas, making the site ideal for a prototype OTEC
plant.

Bathen, K. 1977. A further evaluation of the oceanographic

conditions found off Keahole Point, Hawaii, and the
environmental impact of nearshore Ocean Thermal
Energy Conversion plant on the subtropical Hawaiian
waters. In Proceedings of Fourth Annual Conference
on Ocean Thermal Energy Conversion, 22-24 March 1977,
New Orleans, Univ. of New Orleans, pp IV 79-99,

Environmental analyses, as detailed in the
previous 15-month NSF/RANN report, repeated for the
case of a 100 MW and a 240 MW nearshore floating
power plant located 2 km off Keahole Point. Both -
summer and winter conditions were considered. The
intent was to evaluate just the approximate scale
of impact for each case. Based on the temperature
and discharge rate of cold water from the OTEC plant,
the Tocal meteorological and oceanographic data
estimates were made of changes in surface heat exchange,
alteration in heat content of the mixed layer, and
rates of spreading of the discharged work. Work was
completed using the surface heat exchange equations
and the two-dimensional heat conservation equation.
Given then an estimate of the plume outfall charac-
teristics and local bijological data, the degree of
nutrient addition and the extent of possible bio-
stimulation were estimated.

Bretschneider, C.L. 1977. Operational sea state and

design wave criteria: State-of-the-art of available
data for U.S.A. coasts and the equatorial latitudes.
In Proceedings of the Fourth Annual Conference on
Ocean Thermal Conversion at New Orleans, 22-24 March
1977. Univ. of New Orleans, pp.IV 61-73.

This was a "state-of-the-art" investigation on
the availability of published material on the subjects
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of winds, waves, and surface currents for possible
use in the determination of operational and design
criteria for potential OTEC sites. It included the
offshore areas of the U.S. East Coast, the Gulf
Coast and the West Coast, the Hawaiian Islands, and
all the equatorial oceanic areas between 20°S and
20°N latitude. No additional measurements and no
generation of new data were made for increasing the
"state-of-the-art". The sources of data are refer-
enced and classified into one of four classes accord-
ing to a pre-determined set of rules and opinions.

Brekhouskikh, L.M., K.N. Fedirov, L.M. Fomin, M.H.

Koshlyakov, & A.D. Yampolsky. 1971. Large Scale
multi-buoy experiment in the Tropical Atlantic.
Deep Sea Res. 18(12):189-1206.

A Targe-scale hydrophysical experiment aimed
at studying ocean currents variability was conducted
at a selected site {(polygon) centred at 16°30°W in
the Tropical Atlantic. The experiment involved six
U.S.5.R. research vessels and a cross-shaped network
of buoy-stations laid out within a square 113 x 113
nautical miles. Currents and water temperature
were continuously recorded by this network at various
depths. ‘Each-of the buoys was replaced every 25
days, special arrangement being made to have over-
lapping records during each replacement operation.
Additional research programmes were conducted from
participating ships.

Current records revealed an extremely high
variability both in time and in space even after
filtering out the inertial and tidal oscillations
from these records. Density stratification seems
to affect the mean current vector rotation with
depth as well as the inertial and tidal currents
which, as a result, have qualities of large-scale
three-dimensional internal waves.

Among other studies measurements of small-scale
thermohaline structure deserve particular attention.
It is likely that the observed thermohaline micro-
structure is related to an intermittent mixing .
regime in which double~-diffusivity convection inter-
plays with JTarger scale turbulence of both convective
and dynamical origin.
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Bunker, A.F. & L.V. Worthington. 1976. Energy exchange

charts of the North Atlantic Ocean. Bull. Amer.
Meter. Soc. 57(6):670-678,

Charts of calculated energy exchange across the

'the surface of the North Atlantic Ocean have been

constructed. Wind and temperature observations
obtained from 8 million ship weather reports were
entered individually into the bulk aerodynamic
equations with exchange coefficients that varied

with wind speed and stability. The individual fluxes
were averaged to obtain monthly and annual means of
latent and sensible heat momentum. Net radiation
fluxes were calculated using Budyko's {(1963) formulas.
Monthly and annual averages for 32 years have been
formed for 500 subdivisions of the ocean. Averages
for each month from 1941 through 1972 were computed
for 66 10° squares to study the variations and
anomalies of the fluxes, meteorological variables,

and sea temperature. Charts giving annual averages

of the net heat gain by the ocean, evaporation,
sensible and radiational heat exchange, wind stress
components, and meteorological variables are presented.
A graph of the monthly variations for Marsden Square
116 and an anomaly chart for January 1958 show the
variability of the fluxes and the large-scale ~ =
anomaly pattern.

Burns, D.A., M. Car. 1975. Current data report for the

Chew,

eastern part of the Caribbean Sea. Naval Oceano-
graphic 0ffice, Washington, D.C. Tech. Note,
TN6110-6-75 146 pp.

Preliminary analysis of 36 current meter records,
from 18 arrays in the eastern Caribbean Sea, showed
wide variation in mean speed ranging from less than
1 cm/sec near St. Croix and Vieques, to a maximum of
about 90 cm/sec between St. Lucia and St. Vincent
at a depth of 45 meters. Ten of the records had
significant tidal current signatures with maximum
amplitude of the M2 constituent attaining approxi-
mately 24 cm/sec at 590 meters between St. Lucia
and St. Vincent. Data were recorded during all
four seasons at depths ranging from 45 meters- to
1910 meters.

F., K.L. Drennan, & W.J. Demoran. 1962, Drift-

bottle return in the wake of Hurricane Carla, 1961,
J. Geoph. Res. 67(7):2773-2776.
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Most of the drift bottles released off the
Mississippi delta three weeks before hurricane
Carla entered the Gulf of Mexico were recovered
from the vicinity where Carla crossed the Texas
coast. The pattern of the recovered bottles is
presented together with a discussion of some
possible interpretations.

Clarks, G.L. 1938, Light penetration in the Caribbean

Sea and the Gulf of Mexico. J. Mar. Res. VI,
(2):84-94.

Measurements of light penetration using Photox
rectifer cells were made at 8 stations in the
Caribbean Sea region and in the Gulf of Mexico.
At the stations in shallow water east of the
Mississippi Delta, considerable turbidity was
encountered in the surface layers. But at the
offshore station in the Gulf and at all the other
stations the water was found to be highly uniform
and extremely transparent. The value of the
transmissive exponent from 95 to 185 m at the
station in the Cayman Sea west of Jamaica was
k = .038, indicating the presence of the clearest
0cean water ever measured.

Colon, J.A. 1963. Seasonal variations in heat flux

from the sea surface to the atmosphere over the
Caribbean Sea. J. Geoph. Res., 68(5):1421-1430.

The annual variations in the heat flux to
atmosphere over the Caribbean Sea are studied
through a computation of the monthly heat balance
of the oceanic body. Various components of the
heat balance are computed from available climatolo-
gical information; the heat flux is obtained as a
residual. A sample of bathythermograph observations
accumulated through the years and compiled at the
Woods Hole Oceanographic Institution was used in
evaluating the rate of change of the heat content
of the water body-the heat storage term. The
results for this term indicate maximum cooling
rates of about 141 1y day“] in December and maximum
warming of 82 1y day-! in April and August. The
warming from winter to summer is spread over a 7-
month period. The cooling from summer to winter
takes only 5 months. The divergence of heat trans-
port by the ocean current is computed, but the
procedures are, of necessity, rather crude and
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uncertain. There are indications that this term
changes sign, with export of heat observed in
summer and import in winter, but the largest
magnitudes are only of the order of 5 to 10 percent

of the radiation absorption.

The maximum heat Flux

to the atmosphere, about 369 1y day-', is observed

in November; the minimum is 196 1y day~! in August.
The corresponding evaporation rates are 0.58 cm day-1
31 cm day-1 in August. The annuatl
range and annual average are higher than previous
estimates. A separate evaluation using turbulence
transfer formulas with data for a section of the
Caribbean Sea was also made; the results compared
well with the heat balance computations.

in December and 0.

Crease, J. 1962. Velocity measurements in the deep
water of the western North Atlantic. J. Geoph.
Res., 67(8):3173-3176.

Water velocity measurements are reported in
the western North Atlantic using Swallow floats.
The floats were moving at depths of 2000m and 4000m.
Typical speeds seen were of the order of 10 cm/sec.

Cuchrane, J.D. 1968.

Pacific Ocean. Texas A&M, Tech.

19-28.

Currents and waters of the eastern
- Gulf of -Mexico and western Caribbean, of the western
tropical Atlantic Ocean and of the eastern tropical

Report 68-8T pp

Fisher, E.L. 1958. Hurricanes and the sea-surface

temperature field.

J. of Meteor.,,
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The behavior of hurricane tracks and the
variations of the intensity of hurricanes are
investigated in a study of the seasurface temperatures
around eleven hurricanes. By the use of several ‘
methods of analysis, it is found that there is distinct,
although not conclusive, evidence that hurricanes tend
to form near relatively warm ocean areas, that they
tend to follow tracks along the areas of warmest
water, and that they tend to weaken when they move
over pronouncedly colder water.

Forristall, G.Z. 1974. Three-dimensional structure of
storm - generated currents. J. Geoph. Res., 79(18):
2721-2729.

Previous studies of wind-driven currents have
naturally concentrated on the prediction of destruc-
tive storm surges. However, the present and planned
construction of large facilities in offshore waters
makes study of the currents themselves equally
important. Here we show that it is possible to model
three dimensional time-dependent currents by numerical
integration over a two-dimensional grid followed by
an evaluation of convolution integrals over the sea
slope and wind stress. Solutions for idealized cases
are-compared with analytical results, and a study -
of a hurricane in the Guif of Mexico is presented.

Forristall, G.Z., R.C. Hamilton, & V.J. Cardone. 1977.
Continental shelf currents in Tropical Storm Delia:
Observations and theory. J. Phys. Ocean., 7(4):
532-54

Storm currents are a significant part of the
design hydrodynamic flow field in areas subject
to tropjcal storms. 1In September 1973, Tropical
Storm Delia passed over the instrumented Buccaneer
platform located in 20 m of water 50 km south of
Galveston, Tex. Current meter records from three
depths show the_storm produced currents on the
order of 2 m s-! which persisted to near the bottom.
A mathematical model of wind-driven current genera-
tion was successful in hindcasting the observed
current development after a linear slip condition
bottom was incorporated in the model.

Frassetto, R. & J. Northrop. 1957. Virgin Island
bathymetric survey. Deep Sea Res., 4:138-146.
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A bathymetric survey in the vicinity of the
Virgin Islands showed that Anegada and Jungfern
Passages, which connect the Atlantic Ocean with the
Caribbean Sea between the Virgin Islands Platform and
St. Croix Island, are the deepest charted passages
between the two seas. The 1,072-fathom sill depth
of Jungfern Passage is the limiting factor in the
exchange of deep water between the Atlantic Ocean
and the Caribbean sea.

Furthermore, it was found that the Virgin
Islands Basin, which lies between Anegada and
Jungfern Passages, has a flat floor 2,400 fathoms
deep. It is bounded on the north and south by
sea scarps having apparent slopes of 9 to 43 degrees.
The eastern end of the basin is divided into two
arms which embrace a 420-fathom sea knoll. Both
these arms terminate at sills which separate them
from Anegada Passage and St. Croix Basin. The
western end of the basin is connected with a smaller
basin, 2,200 fathoms deep, which is bordered by
Jungfern Passage on the south and by Grappler Bank
on the west.

Froelich, P.N., D.K. Atwood. 1974. New evidence for
. sporadic renewal of Venezuela Basin water. Deep-

Sea Res. 21(11):969-975.

Diagrams of silicate versus potential temperature
from two years of data at a hydrographic station on
the southern Puerto Rican insular slope 190 km west-
southwest of Jungfern Passage sill indicate the
presence of minor amounts of North Atlantic Deep
water (NADW) below 1600 m. Time-dependent sections
of silicate indicate that this water is present
only sporadically. Time-dependent sections of
salinity display no variation below 1600 m. These
observations are consistent with sporadic overflow
of NADW into the Venezuela Basin over Jungfern sill,
accompanied by mixing and geostrophic spreading at
intermediate depths westward along the Puerto Rico-
St. Croix ridge.

Froelich, P., D.A, Atwood, J. Polifka. Seasonal varia-

tions in the salinity-silicate structure of the
upper Venezuela Basin, Caribbean Sea. Trans. Amer.
Geop. Union, 55{(4):309. 1974.

Recent temporal hydrographic¢ studies in the
Venezuela Basin have yielded new information concern-
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ing variations in the upper 400 meters. Seasonal
low-salinity surface water during October-November
is characterized by high silicates, indicative of
runoff, probably Amazonian. Linear regressions

of silicate versus salinity yield excellent correla-
tions (r > .9). STD traces during the lTow-salinity
season display homogeneous low-salinity, high-
silicate water underlain by a steep thermocline, the
top of which shows a 2°/09 increase in salinity and
3 2 ug-at/} decrease in silicate within 15 m.
Salinity and silicate sections across the eastern
Caribbean display temporal variations in the lateral
position and strength of the Subtropical UnderWater
(SUW) core. The SUW can be characterized by a weak
silicate minimum as well as a strong salinity maximum.

D.J., E.E. Adams, G.H. Jirka. 1978. Evaluation of
mixing and recirculation in generic OTEC discharge
designs. In Proceedings of the Fifth Ocean Thermal
Energy Conversion Conference, 20-22 Feb. 1978,
Univ. of Miami, Clean Energy Research Institute.

pp III 104-116.

This paper has two parts. The first summarizes
the results of an experimental and analytical study
of the external fluid mechanics of generic OTEC
designs, which was conducted at M,1.T.'s R.M. Parsons
Laboratory for Water Resources and Hydrodynamics from
March 1976 to July 1977. 1In this study it was con-
ctuded that plants of 100-200 MW, utilizing mixed
evaporator and condenser discharges, could be designed
to operate with no recirculation under typical ocean
conditions. The primary design variables affecting
recirculation were identified and recommendations
for future research were made. The second half of
the paper outlines a continuing research effort.

This effort consists of further study of near-field
mixing processes currently underway at M.I.T. and
study of the intermediate field disturbances of the
ambient ocean now underway at Cornell University.

Fukaoka, J.A., A. Ballester & F. Cervigon. 1964. An

analysis of hydrographical conditions in the Caribbean
Sea-1TI-Especially about upwelling and sinking.
Studies on Oceanography. Hidaka Commemoration,

Univ. of Washington Press, Seattle. pp. 145-149.
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Gordon, A.L. 1967. Circulation of the Caribbean Sea.
J. Geoph. Res. 72,(24):6207-6223.

The geostrophic method was applied to six north-
south hydrographic profiles across the Caribbean
Sea and one across the Yucatan Strait. An access
of flow exists in the southern third of the Caribbean
Sea. It flows directly over the steep slope in the
reference layer found by DEFANT's method. This
condition is similar to that of .the Gulf Stream. -
The baroclinic mass distribution extends to approxi-
mately 1200 meters. Below this, the flow is weak
( 5 cm/sec) except in the depths of the Cayman and
Yucatan basins, where currents of over 10 cm/sec
occur. The deep and bottom flow may fluctuate in
phase with overflow through the Windward and Anegada
passageways. The main axis of flow corresponds
closely with the main axis of spreading found by
the core method in both the salinity maximum and the
salinity minimum layers. The volume transport across
the meridignal section in the Caribbean is about
31 x 108 /sec toward the west. The northern
passageways contribute only a small part of this
water. The major outlet is the Yucatan Strait, where
the calculated geostrophic volume transport corresponds
to the transport through the Strait of Florida. The
surface flow is directly affected by the wind. The
upper baroclinic field mass is produced by the Ekman
transport of the light surface water toward the northern
boundary. It is expected that divergences occur to
the south of the main flow, and convergences occur
to the north. This is supported by salinity and
temperature sections. The upwelling.in the south is
calculated to be of the order of 10-1 cm/sec at the
bottom of the Ekman Tayer.
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Gould, W.J., W. J. Schmitz, & C. Wunsch. 1974, Preliminary

field results for a Mid-Ocean Dynamics Experiment
(MODE-0). Deep-Sea Res. 231(11):911-931.

Three arrays of moored instruments were placed
in the western part of the Sargasso Sea in 1971-1972
to provide pilot data for a Mid-Ocean Dynamics Experi-
ment {MODE-I). Current, current-temperature, tempera-
ture-pressure, and acoustic positioning sensors were
deployed on these moorings. The acoustic positioning
instrumentation, in combination with conductivity,
temperature, and pressure sensors, was also used in
free-fall mode to obtain 12 vertical profiles of
temperature and horizontal currents with a vertical
resolution of 20 m over a 36-h period during deploy-
ment of the first array. These observations were
collectively designed to provide estimates of energy
levels and space and time scales for mqsosca]e motions.
For frequencies less than 1 cycle day~!, velocity and
temperature records are dominated by 50-100 day
fluctuations, with apparent horizontal spatial scales
of the order of 100 km. The vertical structure of
the mesoscale motions appears to be dominated by the
barotropic and first few baroclinic modes. Estimates
of kinetic energy from current meter records were
found -to depend upon -the type of mooring used.  Records:
from moorings with surface buoyancy yield kinetic
energies that are higher than those from moorings with
subsurface buoyancy. This effect occurs over the
entire frequency spectrum. A special purpose experi-
ment, with current meters at the same depths on the
two different mooring types and separated horizontally
by only a few hundred meters, yielded the same type
of result. The vertical and horizontal displacements
of a mooring with subsurface buoyancy at 500-m depth
(water depth of about 5400 m) observed over a 4-day
duration during the retrieval of the third array
were T 1 and ¥ 50 m, respectively. Pressure measure-
ments at other depths on this mooring yielded the
same * 1 m bound on the magnitude of vertical excursions.
The vertical displacements obtained from a 4 1/2 -
month pressure record at 2000-m depth for a similar
mooring configuration were * 6 m.

Hastenrath, S.L. 1966. On general circulation and

energy budget in the area of the Central American
Seas. J. Atmosph. Sci. 23:694-711.

The field of large-scale vertical motion and
the atmospheric oceanic energy budget in the areas of
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the Caribbean Sea and the Gulf of Mexico are studied
with emphasis on seasonal and regional variations,
using the available radiosonde data of the entire
year 1960. The atmosphere over the Caribbean Sea
exports latent heat during the winter half of the
year, changing to import during summer, while
divergence of the latent heat flux prevails over the
Gulf of Mexico during most of the year with the ex-
ception of midsummer. The troposphere as a whole
imports geopotential energy and sensible heat during
winter in the Caribbean, and during most of the year
in the Gulf area, this being effected by the upper-
tropospheric westerly current originating over the
equatorial regions of the eastern Pacific. During
the summer half of the year, an export of geopotential
energy and sensible heat takes place over the
Caribbean Sea, being concentrated in the uppertropo-
spheric easterlies, this patternalso including the
area of the Gulf of Mexico in midsummer. Regarding
the total energy budget, the troposphere over the
Caribbean Sea acts as an exporter of enerqgy to

other parts of the globe throughout the year, while
import is indicated for the Gulf of Mexico during
some winter months. Ocean currents export heat

from the Caribbean Sea during the summer half of

the year while conspicuous import is indicated for
the Gulf of Mexico throughout the year, with the
exception of midsummer. The tropospheric energetics
are discussed with respect to their role in the
general circulation.

Hastenrath, S.L. 1968. Estimates of the latent and
sensible heat flux for the Caribbean Sea and the
Gulf of Mexico. Limn. & Ocean. 13(2):322-331.

Monthly mean values of the latent and sensible
heat flux at the sea-air interface (Q. + Q.) are
derived for the areas of the Caribbean Sea and the
Gulf of Mexico, separately: 1) from the multiannual
mean of the oceanic heat budget: 2) from the atmos-
pheric energy budget, on the basis of the available
radiosonde data for the entire year 1960; and
3) by the bulk-aerodynamic method, using 1960 ship
observations.

The annual average of the latest and sensible
heat transfer in the area of the Central American
Seas is of the order of 270 ly/day. Making allowance
for the propagation of errors and the different time
periods used, the results of the three independent
approaches are in fair agreement. The shortcomings
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inherent in all the procedures make various independent
approaches desirable wherever possible.

Hazelworth, J.B. 1968. Water temperature variation result-
ing from hurricanes. J. Geoph. Res. 73(16):5105-5123.

Daily variations in sea surface temperature at
several coastal and lightship stations and the Nomad
buoy during the passages of ten hurricanes are pre-
sented. The temperature variations are given for
the coastal stations and Nomad buoy for a period
from 10 days before to 36 days after the hurricane
passed. Generally, marked cooling of the sea surface
occurred during the passage of a hurricane. However,
examples are noted where a rise in temperature occurred.
A comparison was made of the daily temperature varia-
tion due to hurricanes as recorded at the coastal
and deep water sites. The mean temperatures decrease
for the eleven coastal examples and for the thirteen
Tightship examples was 3.1°F, and for the three Nomad
samples was 6.4°F. The extent of cooling of the
surface water appears to be related to storm density
and orientation with respect to the recording station.
The temperature decreases at the Nomad buoy during
the passage of hurricanes were quite large compared
with the changes at other times during the 47-day
periods, but factors other than hurricanes appear
to cause larger temperature variations at the coastal
sites. The length of time for the water temperature
to return to normal after passage of a hurricane
was computed for all stations. For the coastal and
Tightship stations the temperature returned to normal
in less than one month with mean time of 13 and 10
days, respectively. At the Nomad buoy, near prehurri-
cane surface temperature conditions were recorded
within 19 days. These observations indicate the
rapidity with which hurricane effects are modified
by subsequent environmental events.

Hidaka, K. & A. Yoshio. 1955. Upwelling induced by a
circular wind system. Records of Oceano. 2:7-18.
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Jirka, G.H., D.J. Fry, R.P. Johnson, D.R.F. Harleman.
1977. Investigations of mixing and recirculation
in the vicinity of an Ocean Thermal Energy Conversion
ptant. 1In Proceedings of the Fourth Annual Conference
on Ocean Thermal Energy Conversion, 22-24 March 1977,
University of New Orleans, pp IV 35-41.

Experimental and analytical studies on the
external fluid mechanics in the vicinity of an
Ocean Thermal Energy Conversion (OQTEC) plant are
conducted. Schematic OTEC conditions defined by
a mixed discharge model and a discreetly stratified
ccean are assumed. The interaction of several fluid
mechanical regions, a jet entrainment zone, an
intermediate buoyant layer and an intake flow zone,
is simulated in a shallow laboratory basin represent-
ing the upper layer of the stratified ocean. A
concurrent analytical model development gives satis-
factory agreement with the experiments and allows to
define an approximate criterion for the existence of

recirculation of discharge water back into the plant
intake. -

Jordon, C.L. 1964. On the influence of tropical cyclones
on the sea surface temperature field. Proc. Symp.
Trop. Meteor. New Zealand Meteor. Vol. 7, Service
Wellington, pp. 614-622.
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Kinard, W.F., D. Atwood and G.S. Giese. 1974. Dissolved
Oxygen as Evidence for 18°C Sargasso Sea Water in
the Eastern Caribbean Sea. Deep-Sea Res. 21(1):
71-82.

Dissolved oxygen measurements at a serial hydro-
graphic station in the eastern Caribbean and along
a hydrographic transect between La Parguera, Puerto
Rico and La Guaira, Venezuela (67°W) indicate an
intermediate oxygen maximum at about 300 m in the
north gradually rising to 175 m in the south. The
water at the oxygen maximum has a temperature of
about 18°C and a salinity of about 36.5°/,., indicat-
~ing it is 18°Sargasso Sea Water.

Korgen, B.J,G Bodvarsson, and L.D. Kulm. 1970. Current
speeds near the ocean floor west of Oregon. Deep-
Sea Res. 17(2):353-357.

Near-bottom current speeds were measured at
distances of from 1-3 meters above the ocean floor
west of Oregon. The instrument used was a tempera-
ture-current probe designed to measure temperatures
at 8 levels and current speeds at either 1 or 2
levels near the sea floor.

Sampling was carried out at six selected positiens.
A distribution of recorded current speed versus water
depth (from 725 to 2900m) reveals a systematic and

significant increase in current speed with decreasing
depth.

Mean current speeds for depths from 2700 to 2900
meters were approximately 2 cm/sec with maxima of
up to 6 cm/sec. Mean current speeds for continental
slope stations, with depths from 725 to 1700 meters,
range from 5 to 20 cm/sec with maxima of 20-40 cm/sec
depending on water depth,

LaFond E.C. 1962. Temperature structure of the upper
layer of the sea and its variation with time. Temper-
ature, its measurement and control in science and
industry, Nol. I. Reinhold, N.Y. opp. 751-762.

Description of equipment necessary to measure
the temperature structure versus time is discussed.
Also, factors controlling the sea temperature are
described, as well as cycles in sea temperatures.

Short period temperature fluctuations are also
described.
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Lee, T.N., R.S.C. Munier, S. Chin. 1978. MWater mass
structure and variability north of St. Croix, U.S.
Virgin IsJands, as observed during the summer of
1977, for OTEC assessment. UM-RSMAS #78004, Univ.
of Miami, Rosentiel School of Marine and Atmos. Sci.
80 pp.

Variability of the water mass structure north
of St. Croix in the Virgin Islands Basin was observed
during a 2.5 month study of corrosion and biofouling
on OTEC heat exchanger performance in the summer of
1977. Daily STD profiles and weekly hydrocasts
were taken of the upper 1500 m from a Tracor Marine
parge moored 15 km north of St. Croix in 3600 m water
depth, The largest temporal fluctuation in water
properties occurred in the Tropical Surface Waters
of the upper 100 m due primarily to advection of
this spatially inhomogeneous water mass past the
moor. Currents in the upper layer were also highly
variable with speeds ranging from 0 to 50 cm/sec and
numerous direction reversals. Subsurface currents
appeared to be more steady and toward the west at
10 to 15 cm/sec.

The water used in the heat exchanger test was
pumped continuously from the Tropical Surface
Waters at a depth of 20 m, which is within the
surface mixed layer defined by temperature, but at
the base of the surface salinity mixed layer. Intake
salinity variations of 1.7°/,, over a one-month
period were coherent with similar changes in the
upper 60 m of TSW. Variation in water properties
below the Tropical Surface Water was small. The
mean and ranges of temperature and salinity at 1000 m
were only 5.4 + 0.5°C and 35.0 t 0.06 °/.., res-
pectively. Temperature of the surface mixed waters
was also quite steady with a total range of only
0.9°C from 27.8 to 28.7°C during the experiment.
The thermal resource available for OTEC power plants
defined as the vertical temperature difference AT
between the surface mixed waters and subsurface
water averaged 23°C at a depth of 1000 m with a
standard deviation of * 0.2°C. The depth to reach
a AT of 20°C varied from a minimum of 660 m to a
maximum of 740 m. Historical data indicate that
the maximum depth to reach a AT of 20°C would
occur in the winter and would not exceed 956 m.
Thus, from thermal resource considerations, the
waters north of St. Croix are considered an excellent
Tocation for an OTEC site.
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Leipper, D.F. 1967. Observed ocean conditions and
Hurricane Hilda, 1964. J. Atmos. Sci. 24:182-196.

Hurricane Hilda crossed the Gulf of Mexico in
the period 30 September to 4 Qctober 1964, develop-
ing into a very severe hurricane in the central
Gulf. Sea temperature data available prior to the
storm indicated what was probably a typical late
summer situation with some surface temperatures
runring above 30C. Beginning 5 QOctober 1964, a 7-
day cruise was conducted over the area where hurri-
cane winds had been observed. Using the GUS III
of the Galveston Biological Laboratory of the
Bureau of Commercial Fisheries, four crossings of
the hurricane path were made. Bathythermograph
observations were taken regularly to 270 m and
hydrographic casts to 125 m. The data on all four
crossings indicated similar patterns. The observed
temperature-depth structures after the storm indicated
that the warm ocean surface ltayers were transported
cutward from the hurricane center, cooling and
mixing as they moved; that these waters converged
outside of the central storm area with the result
that downwelling to some 80 to 100 m in depth took
place there; and that cold waters upwelled along
the hurricane path _from depths of approximately
60 m. Sea surface temperatures decreased by more
than 5C over an area of some 70 to 200 mi. A
cyclonic current system was observed around the area
of greatest hurricane intensity. It is estimated
that the total heat loss from the ocean to the
atmospher? in the area of hurricane force winds was
10.8 x 1018 ¢al with the transfer per unit area
being 4500 cal cm-2. The data collected on the GUS III
cruise are the first systematic observations available
immediately after a severe hurricane in deep water,

Leming, T.D. & M.C. Ingham. Oceanic conditions in the

eastern Caribbean Sea and Adjacent Atlantic,
6 August to 6 October 1965.
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Marine Sciences Department. 1976. Oceanographic data of the

University of Puerto Rico; January 1971-June 1973, Vol.
I. University of Puerto Rico, Mayaguez, Puerto Rico.
Collection maintained at the Hall of Puerto Rico Docu-
ments, General Library, University of Puerto Rico,
Mayaguez.

Tables showing depth, temperature, salinity, density,

Dynamic height, oxygen, phosphate, silicate, and potential
temperature for both observed and interpolated data col-
lected by the Department of Marine Science, University of
Puerto Rico, Mayaguez, and funded by the National Science
Foundation and the Commonwealth of Puerto Rico.

Marine Sciences Department. 1876. Oceanographic data of the

University of Puerto Rico; January 1971-June 1973, Vol.
II. University of Puerto Rico, Mayaguez, Puerto Rico.
Collection maintained at the Hall of Puerto Rico Docu-
ments, General Library, University of Puerto Rico,
Mayaguez.

Tables showing depth, temperature, salinity, density,
dynamic height, oxygen, phosphate, silicate, and potential
temperature for both observed and interpolated data col-
lected by the Department of Marine Science,. University of
Puerto Rico, Mayaguez, and funded by the National Science
Foundation and the Commonwealth ‘of Puerto Rico.

Marine Sciences Department. 1976. Oceanographic data of the

University of Puerto Rico; July 1973-November 1975,
Volumes I and II. University of Puerto Rico, Mayaguez,
Puerto Rico. Collection maintained at the Hall of Puerto
Rico Documents, General Library, University of Puerto
Rico, Mayaguez,.

Tables showing depth, temperature, salinity, density,
dynamic height, oxygen, phosphate, silicate, and potential
temperature for both observed and interpolated data col-
lected by the Department of Marine Science, University of
Puerto Rico, Mayaquez, and funded by the National Science
Foundation and the Commonwealth of Puerto Rico.



Martin, P.J., G.O; Roberts. 1977. An estimate of the

impact of OTEC operating on the vertical distribution
heat in the Gulf of Mexico. In Proceedings of the
Fourth Annual Conference on Ocean Thermal Energy
Conversion, 22-24 March 1977, Univ. of New Orleans.
pp V 26-34.

The effect of OTEC operation on the thermal
structure of the Gulf of Mexico is estimated by
using a one-dimensional z-t heat conservation
equation to predict the horizontal mean temperature.
The surface heat fluxes are parameterized in terms
of the observed air-sea temperature difference and
the predicted sea surface temperature (SST).
Advection of heat into the Gulf by the Yucatan
Current is treated as a heat source for the surface
layer of the Gulf. A constant mean upwelling is
calculated to balance the overall heat budget.
Within the mixed layer, the vertical diffusivity is
calculated using the Mellor-Yamada Level 2 turbulent
diffusion model. Below the mixed layer, a constant
diffusivity is determiend from a balance between
vertical advection and diffusion to yield a realistic
mean temperature profile.

The operation of 1000 OTEC plants in the Gulf
is parameterized by the addition to’ the model of a
mean vertical velocity profile required to complete
the circulation between the near-plant intake and
discharge flows. The result is a surface cooling
and a warming at depth. The SST drops about 0.3°C
during the first two years and then remains fairly
constant. However, the deep water in the region
above the cold water intake warms continuously at
the rate of about 0.3°C per year. This rate of
deep warming is about the worst that could be
expected since the model does not allow the removal
of this heat from the Gulf by the currents. For
the operation of only 100 OTEC plants, the impact
is correspondingly reduced. After 30 years, the
model predicts a drop in S$SST of 0.05°C and a
warming in the region above the cold water intake
of 0.8°C.

McFadden, J.D.. 1967. Sea-surface temperatures in the

wake of Hurricane Betsy (1965). Monthly Weather
Review, 95(5):299-302.

Following the passage of Hurricane Betsy (1965)
through the Gulf of Mexico two flights were made
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the current pattern associated with the origin of
the Equatorial undercurrent. The temperature/oxygen
relationship indicates that most of the Undercurrent
water comes from the South Atlantic by way of the .
North Brazilian Coastal Current and that the contri-
bution of North Atlantic water is very minor.

Metcalf, W.G., M.C. Stalcup. 1974. Drift bottle returns
from the eastern Caribbean. Bulletin of Marine
Science, 24(2):393-395,

On oceanographic cruises to the eastern Caribbean
Sea in the spring of 1970 and again in 1972, 1750
drift bottles were released. A total of 65 returns
(3.7 per cent) were recorded. During the 1972 cruise,
a small but distinct shift in the drift pattern with
time was observed in a group of bottles released 1in
a period of 1 1/2 months in a relatively small area
near St. Croix island, It is inferred from the
results that the major part of the surface water
Crossing the Caribbean Sea from east to west enters
that sea through the southeastern and not the north-
eastern passages.

Miller, A.R. 1978. Ranges and extremes of the natural ..
—environment in and about the Hawaiian Archipelago
(related to design criteria for Ocean Thermal
Energy Conversion plants). Report #C00-4293-5
(WHOI-78-74). Woods Hole Oceanographic Inst. for

U.S. Dept. of Energy. Contract #EG-77-5-02-4293,
ADOO. 56 pp.

Examination of data from the water areas
surrounding the Hawaiian Islands leads to the con-
clusion that Hawaiji is suitably situated for ocean
thermal energy conversion. Historical records of
surface temperature for the Hawaiian area and the
tropical and sub-tropical Pacific suggest that the
proposed site may be vulnerable to significant
epochal changes and yearly shifts in base tempera-
tures but the site should still remain within the
limits of operational parameters. Annual and
monthly charts have been prepared for sea surface
temperature, surface windspeeds and directions,
and reported storm severities.

Miller, A.R. 1978. A preliminary comparative study of
historical sea surface temperatures at potential
OTEC sites. 1In Proceedings of the Fifth Conference
on Ocean Thermal Energy Conversion, 20-22 Feb. 1978,
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Univ. of Miami, Clean Enérgy Research Inst. pp. III
214-230. :

Analyses of surface temperature averages and
anomalies focusing on the 25-year period 1945-1969
show long-term systematic fluctuations varying on
a hemispherical scale. A 180-degree phase correspon-
dence seems to exist between the fluctuations of
temperature in the Gulf of Mexico and the Caribbean
Sea. Another time-connected coincidence, based on
a 50-year record, suggests a relationship between
Hawaijan temperatures and Japanese surface tempera-
ture phenomena. A breakdown of annual surface
temperatures into their monthly anomalous components

identified cold seasons from warm seasons and warrants
further study.

Molinari, R.I., and J.F. Festa. 1978, Ocean thermal and

velocity characteristics of the eastern Gulf of Mexico
relative to the placement of an OTEC plant: A
progress report. 1In the Proceedings of the Fifth
Ocean Thermal Energy Conversion Conference, 20-22

Feb. 1978. Univ. of Miami, Clean Energy Research
Inst. pp III 64-83.

Historical temperature and current data collected
in the Gulf of Mexico are reviewed to produce data
representations needed in the design and placement
of an OTEC plant and the evaluation of the impact
of the plant on the environment. Specific products
include horizontal plots of mean monthly vertical
temperature differences and mixed layer depths.
Regions selected by the Department of Energy as
potential OTEC sites are subdivided into smaller
regions, for which annual and seasonal exceedence
diagrams of these thermal properties are computed.
Synoptic cruise data are reviewed to ascertain those
regions which warrant further study, and to determine
the cause of the variability in the smaller regions.
Finally, a method to obtain crude estimates of the
distribution of surface speeds is presented.

Molinari, R.L., and J.F. Festa. 1978. QOcean thermal

and velocity characteristics of the Gulf of Mexico
relative to the placement of a moored OTEC plant.
NOAA Tech Memo ERL AOML-33. HOAA Atlantic Oceano.
and Meteorological Lab., Miami 105 pp.

This report presents the results of the second
stage of a four stage effort designed to provide ocean
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thermal and velocity data in the Gulf ef Mexico for
OTEC. The four stages are:

(1) define ocean thermal and velocity data
requirements for O0TEC design and impact
studies,

(2) review the historical data-set and literature
for relevant information,

(3) design a measurement and/or data reanalysis
program, and

(4) conduct the measurement and/or reanalysis
program.

Murray, S.P. 1970. Bottom currents near the coast during
Hurricane Camille. . Geoph. Res. 75(24):4579-4582.

A ducted current meter, which was mounted on
the bottom in 6.3 meters of water off the coast of
the Florida panhandle, was operative during much
of the activity of Hurricane Camille. Before the
arrival of the storm an unexpected outward extension
of the wave-driven longshore current was recorded,
During the storm bottom current speeds ranged ‘up to

160 cm/sec, and their direction rotated from along-

shore parallel to the wind to seaward against the
wind.

Oser, R.K. and L.J. Freeman. 1969. Oceanographic cruise
summary Vieques Island, Puerto Rico area December
1968 to March 1969. Naval Oceanographic Office,
Hashington, D.C. Informal Report IR#69-66. 16 pp.

This informal report is a summary of an oceano-
graphic and geophysical survey in the proposed Deep
Oceanographic Survey Vehicles (DOSV) Test and Evalua-
tion (TEV§ Site southwest of Vieques Island, Puerto
Rico. Included in the survey were Nansen casts,
bathymetry, sub-bottom profiling, current measurements,
marine fouling studies, bottom photography, geomagnetic
measurements, and sediment sampling.

Ostericher, C. 1967, Oceanographic cruise summary Atlantic
Fleet Tactical Underwater Range; Southeast Puerto Rico-
1967. Naval Oceanographic 0ffice, Washington, D.C.
Informal Report IR#67-76 44 Pp.

An oceanographic survey of a proposed Fleet
Tactical Underwater Range off the southeast coast of
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Puerto Rico was conducted during March - April

1967. Data collected included: temperature and
salinity, surface currents, moored current meter
measurements, bottom sediments, bottom sterco
photographs, and ambient noise. Preliminary analysis
of the data indicates that the distribution of physical
properties is as expected for this time of the year,
but current speeds may be somewhat higher than
anticipated. The bottom was revealed to be exceedingly
flat in the basin, which is an area of ponded sediments.

Included in the report are the ocean station
data listings and the calculations used in the
analysis of the moorings.

Parr, ALE. 1937. A contribution to the hydrography
of the Caribbean and Cayman Seas. Bull. Bingham
Oceano. Col1. 5(4):1-110.

Parr, A.E. 1938. Further observations on the hydrography
of the Eastern Caribbean and adjacent Atlantic waters.
Bull. Bingham Oceano. Coll. 6(4):1-29.
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Perlroth, I. 1971. Distribution of mass in the near
surface waters of the Caribbean. SIRCSAR, UNESCO,
Paris. pp 147-152,.

Historical oceanographic data have been used
in this study to achieve a better understanding
of the physical processes in the near surface
waters of the Caribbean. It is believed that
climatological studies of this type may lead toward
a deeper understanding of the complexities in
the oceanngraphic media.

The advantage of setting up a historical model
to depict average physical environmental conditions
in the ocean are manifold. Surveys of water mass
structure and transport could be planned more
intelligently; a more complete procedure for quality
control and processing of data could be established
and, consequently, a better understanding .of the air-
sea interaction would result. Furthermore, the
historical model would enable the synoptic oceano-
grapher to review vast ocean areas.

Piacsek, S.A., P.J. Martin, J. Toomre and G.0. Roberts.
1976. Recirculation and thermocline _perturbations .
from ocean thermal power plants. RNRL, NRL-GFD/OTEC
2-76, ERDA contract E(49-26)1003 to NRL.

Numerical experiments were performed on the
fluid motions resulting from the pumping action of
ocean thermal power plants. 1In particular, the
resulting thermocline distortions, sea surface
temperature decrease and corresponding heat flow
change were investigated. The object was to find
engine discharge configurations and pumping rates
that would minimize these alterations. This would
result in both a minimal environmental impact and
preservation of the temperature gradient across the
engine, i.e. the energy resource.

The results obtained to date use 2-D turbulent
flow calculations. HNear the engine, the sea surface
temperature reduction ranges from 0.01°F to 3°F,
depending on design, flow rate, season and location.
The mean temperature of the warm inflow water is
reduced by up to 4°F from the mean temperature at
the depth, for certain designs and flow rates, due
to recirculation and turbuience. The far-field
surface heat calculations applied to the Puerto
Rico area shows that a depression of the sea surface
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temperature by 0.1 °C jeads to an %ncreased heat

flow from air to sea of 9.6 cal/cmé/day, serying to
replenish the heat removed from the surface layers

by the plant. Accepting 0.1 °C as a permissible
environmental perturbation, the area requirement

for a typical 100 MW plant §s 2500 km2, with a radius
of 28 km. The corresponding estimates for Hawaii

are 4 cal/cm®/day, an area of 6000 kmZ, and a radius
of 44 km.

Piacsek, S.A. and A.C. Warn-Varnas. 1977. Air-sea inter-

action perturbations by plant operations. In
Proceedings of the Fourth Annual Conference on
Ocean Thermal Energy Conversion, 22-24 March 1977,
University of New Orleans. pp IV 3-6.

The readjustment in the air-sea heat flow
and the air-sea temperature contrast following a
possible sea surface temperature lowering by OTEC
operations has been calculated in the areas of
Puerto Rico, Gulf of Mexico, and Hawaii. The net
heat and the perturbations due to OTPP operations
are found to be 96, 81 and 67 cal/cm2-day-°C.

Puerto Rico Nuclear Center. March 1973. Aguirre power

project environmental studies 1972, Annual Report
and Appendix, Puerto Rico Nuclear Center, U.P.R.,
Mayaguez, PRNC 162, 464 in 2 Vols.

This report of two volumes is an environmental
report of Jobos Bay on the south coast of Puerto
Rico. Many types of data were taken, with no
conclusions indicated. Some of the data taken and
discussed are: plankton, foraminifers, algae,
turtle grass, mangrove root community, coral reef
ecology, fish and birds.

Puerto Rico Nuclear Center. June 1975. Aguirre environ-

mental studies Jobos Bay, Puerto Rico Final Report,
Pgerto Rico Nuclear Center, U.P.R. Mayaguez, Puerto
Rico. PRNC 196 VI (95 p), VII (184 p).

This report of two volumes is an environmental
report of the Jobos Bay on the south coast of Puerto
Rico. Many types of data were taken, with conclusions
méntioned for some of them. The data taken include:
microzooplankton, zooplankton, seagrasses, mangrove
community, fish, fish egg entrainment, and foraminifera.
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Richards, F.A. and R.F. Vaccaro. 1956. The Cariaco

Riehl

Trench, an anaerobic basin in the Caribbean Sea.
Deep-Sea Res. 3:214-228.

The Cariaco Trench is a basin in the Caribbean
Sea which is anaerobic below depths of about 375
meters to the bottom at 1,400 meters. Below ea.
250 meters the water is essentially isothermal at
about 16.9 C and has practically uniform salinity
and density. Hydrogen sulphide reaches maximum
concentrations of .03 mgA sulphide S per litre, which
is about 10% of the concentration found in the depths
of the Black Sea. Inorganic phosphate is linearly
related to the oxygen and sulphate consumption in a
ratio equivalent to 235 atoms of oxygen utilized for
the production of 1 atom of phosphate. The anaerobic
Zone is free of nitrate and nitrite, but some ammonia
is present. It is suggested that most of the nitrogen
arising from decomposition of organic matter is
present as elementary No in solution. The age of the
water is estimated to be between 100 and 2,000 years.
The physical properties of the trench are compared
with those of other isolated basins.

» H. 1962. Radiation measurements over the Caribbean
during the autumn of 1960." 3. Geoph. Res. 67(10):
3935-3942,

Observations made over the Caribbean Sea with
the Suomi-Kuhn infrared radiometer during 1960 are
analyzed. About 120 soundings released at five
stations ascended to the 100-mb level or beyond.
Compared with Elsasser’'s results they show greater
cooling below 800 mb and much smaller cooling
higher up. 1In the high troposphere a radiational
heat source due to long-wave radiation alone is found.
It follows that vertical heat transport requirements
from the surface by convective means, for heat
balance, are much less than was previously estimated.
Fragmentary observations above 100 mb indicate that
the outward radiative flux increases above the tropo-
pause and gradually approaches the values obtained
from Explorer 7 measurements. Strong cooling of the
air above the tropopause is computed, as much as &
times that of the troposphere. Day-to-day fluctua-
tion of net radiation from the troposphere was large,
as was the range of observed fluxes. Statistical
analysis indicated that the control of the net radia-
tion from the troposphere lies mainly in the high
troposphere, in the layer of maximum wind. It is
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shown that a cirrus hypothesis of this control is
at least plausible and that differential radiation

can be sufficiently strong to be of considerable possible -

importance in the growth and evolution of daily
weather systems. '

Roberts, G.0. 1977. Stratified turbulence modeling for

Ross,

new field external flow. In Proceedings of the Fourth
Annual Conference on Ocean Thermal Energy Conversion,
22-24 March 1977. Univ. of New Orleans. pp IV 7-25.

A simplified two dimensional model is used to
calculate the turbulent flow near the two outflows
and the warm inflow associated with one power module
of the Lockheed baseline OTPP design. A rectangular
domain of depth 500 ft has three horizontal slots
of height 72 ft on its left boundary, centered
respectively at depths of 75, 150 and 315 ft, to
represent the inflow and outflows. Four separate
computations assume statistical uniformity across
widths of 50 ft, 100 ft, 200 ft and 400 ft; we
believe that the results for widths of 100 ft and
200 ft essentially bracket the results for the
three-dimensional prototype flow. The assumed ambient
temperature profile has a surface temperature of
80°F, and -a thermocline at depth 300 ft where the
temperature is 61.5°F. The temperature at 500 ft
is 44 .4°F, The assumed temperature at the cold
inflow, at depth 1550 ft, is 42.6°F; this water is
warmed by 2.4°F in the condenser and leaves the cold
outflow at 45°F,

The numerical results for the average warm
inflow temperature are 75.7°F, 77.2°F, 77.9°F and
78.6°F in the four cases. This inflow water is
cooled by 3°F in the condenser before leaving the
warm outflow. 1In all four cases, the far-field flow
Teaves or enters tne computational domain horizontally,
with temperature equal to the ambient profile. 1In
the 50 ft and 100 ft computations, there is signifi-
cant recirculation (4000 cu ft/sec and 1300 cu ft/sec,
respectively) from the warm outflow back into the
warm inflow, contributing to the reduced inflow
temperatures. In all cases, the OTPP-generated
turbulence is negligible at distances greater than
350 ft from the infiow and outflows.

C.K. and C.R. Mann. 1971. Oceanographic observa-
tions ih the Jungfern Passage and over the sill into
the Venezuela Basin, February 1968. SIRCSAR, UNESCO,
Paris. pp 171-174.

265



According to previous work, the 3.84°C isotherm
lies at a depth of 3000 m in the Venezuela Basin.
These results show the same isotherm at a depth of
only 1700 m in the Jungfern Passage, and at the bottom
in the basin. As no water with potential temperature
less than the above was found at stations within the
basin, it is not certain to infer that the Venezuela
Basin bottom water is continually being renewed through
the Jungfern Passage. Possibly the cold dense water
s prevented from moving down into the basin by the
dynamics of deep water near the sill.

Rossby, T., and D. Webb. 1971. The four month drift of
a Swallow fioat. Deep-Sea Res. 18{10):1035-1039.

A Swallow float at 1100 m depth was tracked by
SOFAR in the region between Bermuda, Bahamas and
Puerto Rico. During the four month life of the
float it drifted 300 km to the west, a displacement
which corresponds to an average drift rate of 2.8
cm/sec. This is consistent with previous studies and
suggests that the transport to the west between
Bermuda gnd the West Indies is well in excess of
100 x 10°% m3/sec. The shape of the trajectory is
such that it may have been governed by planetary
wave dynamics. - T '

Inertial oscillations were observed with un-
expected clarity. It is evident that they can
remain stable for weeks, but on one occasion when
the temperature of the water dropped 0.5°C, a sudden
change in the oscillation phase and frequency was
observed, a transition that is consistent with

the Tloat moving from one relatively well-mixed Tlayer
to another.

Sands, M.D. 1978. Progress report for the environmental
impact assessment program for the 1-MWe early OTEC
test platform. In Proceedings of the Fifth Ocean
Thermal Energy Conversion Conference, 20-22 Feb.
1978. Univ. of Miami, Clean Energy Res. Inst,.
pp III 186-202.

The 1-MWe Ocean Thermal Energy Conversion Early
Testing Platform (EOTP) has a projected test date
in mid~1979 in the Gulf of Mexico, Hawaii or Puerto
Rico. With the implementation of the National Environ-
mental Policy Act of 1969, all government funded
activities must consider potential environmenta)
consequences of the activity and prepare an environ-
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mental impact assessment and bring environmental
considerations into the decision making process.
This presentation summarizes the progress to date
for the environemntal impact assessment program for
OTEC-1, the Early Ocean Testing Platform.

The considerations in assessing impact for
OTEC-1 First require a detailed description of the
physical system design. Included in the design
description are the depth of intake and discharge
pipes, volumes discharged, and applicable safety
regulations and procedures. The detailed site
descriptive information including the biological,
chemical, physical, oceanographic, and meteorogical
data must be gathered from all available sources.
Particular study areas include the effects of impinge-
ment and entrainment, biocide effectiveness and
toxicity to non-target biota, working fluid release
effects, climatological impacts, and worker safety.
Also, the International, Federal, State, and local
legal implications of siting will be considered.
While socioeconomic impacts of OTEC-1 now appear
to be minimal, there is potential later for substantial
benefits to the resident community serviced. When
all relevant data is at hand the predictive process
for assessing environmental impact is underway.

Sandusky, J. dand P. Wilde. 1978, Preliminary bio-ecologic

investigations at the OTEC Gulf of Mexico site -
29°N 88°W. 1In Proceedings of the Fifth Ocean
Thermal Energy Conversion Conference, 20-22 Feb.
1978. Univ. of Miami, Clean Energy Res. Inst.
pp IIT 83-103.

Bio-ecologic measurements important for environ-
mental assessment of the impact of an operating
Ocean Thermal Energy Conversion Plant have been
initiated in July 1977 and November 1977 at the pro-
posed Gulf of Mexico site off the coasts of Louisiana.
Mississippi, Alabama, and Florida with physical
oceanographic measurements on the 0SS Researcher in
a joint effort with the Atlantic Ocean Marine Labora-
tory (AOML) of the National Oceanic and Atmospheric
Administration (NOAA). The measurements in July
included 16 formal hydrocast stations of various
depths of 1000 meters. Water was analyzed for
trace metals, nutrients, and phytoplankton biomass
as estimated by chlorophyll and ATP. Physical data
were supplied by NOAA-AOML. In addition, two surface
net casts were taken to obtain zooplankton at the
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site and tow ]40 bioassays were made to measure
productivity. The Deep Scattering Layer (DSL) was
monitored at the site by a continuously recording

12 KHZ depth sounder. Measurements in November

were made from the RV Virginia Key (AOML). They
included 4 hydrocasts, 7 net tows for zooplankton
(samples analyzed by Gulf Coast Research Laboratory),

1 STD trace, 20 XBT's and one 14C phytoplankton
bioassay.

Seiwell, H.R. Application of the distribution of oxygen
to the physical oceanography of the Caribbean Sea
region. Pap. Phys. Oceancg. Meteorol. 6(1):1-60.

Shanley, G. 1972. Hydrographic data for Caribbean Sea
and Pesca Serial Station at 17°38'N, 67°00'W for

1971. Dept. Mar. Sci., U.P.R., Mayaguez #72-1.

Shanley, G.E., Rev., by C.P. Duncan. 1972. Hydrographic
data for Caribbean Sea and for Pesca Serial Station
at 17°38'N, 67°00'W for 171. Dept. of Marine Sci.
U.P.R. Mayaguez #72-1 (REV).
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Smith, N.P. 1978. Longshore currents on the fringe
of Hurricane Anita. J. Geoph. Res. 83(C12):6047-
6051. '

Subsurface current data from a 2-week period
in August and September 1977 are compared with coastal
wind stress and water level data to describe long-
shore motion in response to the passage of Hurricane
Anita across the northern Gulf of Mexico. Current
meters 2 and 10 m above the bottom 21.5 km off the
central Texas Gulf coast indicate strongest speeds
of approximately 70 and 80 cm/s, respectively
coinciding closely with the time of maximum wind stress.
A qualitative comparison of the variations in sea
surface slope and wind stress with the recorded
longshore current suggests that both wind stress
and the longshore pressure gradient combined. to pro-
duce the strong flow recorded during the storm but
that the pressure gradient was primarily responsible

for decelerating the current after the storm made
landfall.

Stalcup, M.C. and W.G. Metcalf. 1972. Current measure-
ments in the passages of the Lesser Antilles. J.
Geoph. Res. 77:1031-1049.

Direct-current measurements during March and

April 1970, in the four major passages through the

Lesser Antilles show a westward transport of about

26 x 109 m3 sec~1. This transport is divided between

the Grenada, St. Vincent, and St. Lucia passages

with, respectively, 10, 10 and 62 x 106 m3 sec-!
flowing to the west. The transgort through Dominica
passage was less than 2 x 106 m3 sec-! during these
measurements. This flow pattern is consistent with
the distribution of variables as shown by data from
hydrographic stations to the east and west of each
passage. On the basis of the temperature-oxygen
relationship, water taht enters the Caribbean with

a temperature between 16°-23°C comes from a broad

band of water found east of the area.

Stalcup, M.C. and W.G. Metcalf. 1973. Bathymetry of the
sills for the Venezuela and Virgin Islands Basin.
Deep-Sea Res. (20(8):739-742.

Recent bathymetric surveys using a precision
radar ranging navigation system in the Anegada-Jdungfern
Passage reveal that the depth of the Jungfern Passage
sills is 1815 m. As described by the 1800 m isobath
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it is 3 km wide and 10 km long and contains a central
depression with depths exceeding 1970 m. 1In agree-
ment with eariier data the Jungfern Passage (Virgin
Passage) sill is shown to be the deepest or controll~

ing one between the Venezuela and Virgin Islands
basins,

The Anegada Passage sill found during the
recent surveys, is not that found by FRASSETTO and
NORTHRUP (1957). The one described here is located
near Barracuda Bank and, with a depth of 1915 m, is
300 m shallower than the one previously described.

Stevensen, R.E. and R.S. Armstrong. 1965. Heat loss
from the waters of the northwest Gulf of Mexico

during Hurricane Carla. Geofisica International,
5:49-567,

The temperature and salinity of an area off
Galveston and Corpus Christi, Texas was measured
about one month after Hurricane Carla passed by.

In general, surface water was seen to be cooler
along the hurricane's path, and warmer elsewhere.
Heat was lost from up to 100 meters depth. An esti-
mate of ?9@ heat loss at each station yields about
2.5 x 10 cal/day. This value seems to compare

with those determined for Hurricane Daisy in 19671.

Sturges, W. 1965. Water characteristics of the
Caribbean Sea. J. Mar. Res. 23(2):147-162.

The volume of Caribbean Sea water in bivariate
classes of potential temperatures vs. salinity has
been estimated from 76 hydrographic stations. The
resulting statistics are presented on a pair of
characteristic diagrams. The outstanding feature
of the diagrams is the strong mode; nearly half of
all Caribbean water lies within 0.1°C and 0.02 per
mil of the mode, and 3.9°C and 34.98 per mil. An
envelope of all samples has been determined. The
waters below 2900 m in each of the four large basins
are compared by using only data from a single CRAWFORD
cruise, In each basin the deep water is remarkably
homogeneous, but the deep waters are different in
the eastern (Yucatan and Cayman) and western (Colombia
and Venezuela) basins. There appears to be no in-
flow of deep water through Jungfern Passage, the
deepest connection with the Atlantic Ocean, but
there may be sporadic inflow through Windward Passage
into the western basins. There appears to be no
inflow of water at mid-depth above either sill.
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Sundaram, T.R., E. Sambuco, A.M., Sinnarwalla and $.K.
Kapur. 1977, The external flow induced by an
Ocean Thermal Energy Conversion (0OTEC) power plant.
In Proceedings of the Fourth Thermal Conference
on Ocean Thermal Energy Conversion, 22-24 March
1977, Univ. of New Orleans. pp IV 42-49,

As an essential part of its operation, the
OTEC plant withdraws large amounts of water (typically
6 x 104 gpm per MW of capacity) from both the surface
layers and the deeper layers of the ocean and dis-
charges them at intermediate levels. The circulations
induced in the ambient ocean of these large withdrawals
and discharges are of paramount importance, since
any adverse changes in the ambient stratification
will directly influence the operational efficiency
of the plant itself. Specifically, any "short
circuit" between the outflows and the inflows will
direclty lead to a decrease in power production.
Because of this direct "feed back" effect, the external
flow induced by an OTEC plant has to be considered
as an essential part of its operation. The present
paper describes the interim results from an on-going
experimental study to assess the recirculation potential
under various design and environmental conditions.
The method used is a "building block" apprcach in
which "dissected" parts of the overall problem are
isolated and studied experimentally. Specifically,
experiments are described on two classes of problems,
the first in which an ambient current is present
but not ambient stratification, and the second in
which the opposite is true. Recirculation is measured
directly by introducing dye into the discharges and
by measuring the dye concentration in the intake
flow. Maps of the distributions in the jet flow of
the mean and turbulent quantities are also given;
such detailed measurements being of relevance to

the "tuning” mathematical (turbulence) models of
the flow field.

The similitude parameters governing the problem
are identified and the manner in which the results
of the "dissected” studies can be used to construct
results for the overall problem is discussed.

Swallow, M, 1961. Deep currents in the open ocean.
Oceanus, VII(3):2-8.

Water currents were measured at 2000 m and 4000 m
in the western North Atlantic Ocean. Speeds seen
were on the order of 10 cm/sec.
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Thompson, J.P., H.E. Hurlburt, and L.B. Lin, 1977.
Development of a numerical ocean model of the Gulf
of Mexico for OTEC environmental impact:and resource
availability studies. In Proceedings of the Fourth
Annual Conference on Ocean Thermal Energy Conversion,
22-24 March 1977, Univ. of New Orleans. pp IV 50-56.

Short of actual operations the complex inter-
actions of OTPP's and the environement can only be-
assessed using numerical ocean models and laboratory
experiments. The best strategy for OTPP far-fijeld
modeling of the ocean is the selection of a single,
well-observed ocean basin with well-defined boundary
and surface input data with conditions in the basin
representative of those to be encountered in the
tropical and subtropical oceans. The basin should
be large enough to represent open ocean conditions,
but small enough for economical computer modeling.
The Gulf of Mexico is therefore appropriate for
initial model studies.

We are developing a hierarchy of numerical
models of the Gulf of Mexico for use in studies
of OTPP operations. The first model is nonlinear,
time-dependent, and retains both barotropic and
first baroclinic modes. The model uses primitive
equations on a8 B-plane and the external and internal
gravity waves are treated implicitly. The model uses
uniform rectangular grid with ax = Ay = 16 2/3 km
and At up to 1/7 day. The numerical model was
driven for five years by an idealized wind field
consistent with observational data presented by
Franceschini and by Hellerman. The statistically
steady-state model results show periods of upwelling
along all the boundaries and downwelling in the
interior. Baroclinic boundary currents of varying
strength are found along all the boundaries, but
are strongest along the western and northern
boundaries. Eddies associated with nonlinear re-
circulation are found in the northwest and southwest
corners with additional eddies representing baro-
clinic Rossby waves found throughout the model
basin. A significant result of the model is the
existence of strong baroclinic eddies in the Gulf
even in the absence of the Loop Current.

Thompson, J.D., H.E. Hurlburt, and P.J. Marint. 1978.

Results from the Gulf of Mexico - OTEC far-field
numerical model. In Proceedings of the Fifth Ocean
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Thermal Energy Conversion Conference, 20-~22 Feb.
1978. Univ. of Miami, Clean Energy Research Inst.
pp. III 141-164.

One reasonable strategy for predicting the
complex interactions between OTEC and the far-
field environment is to develop a numerical mode)
of a single well-observed ocean basin and reproduce
observed aspects of its physical oceanography.
Then OTEC can be inserted as a perturbing influence
on the basin. The impact of OTEC operations on the
circulation and thermal structure of the basin can
then be assessed.

The Gulf of Mexico was chosen for initial model
studies by virtue of its potential for OTEC utiliza-
tion, its size, and relatively well-defined boundary
conditions and well-observed features. The second
model in the hierarchy of increasingly complex models
of the Gulf of Mexico has now been developed, Simpli-
fied but realistic bottom topography and wind-forcing
have been incorporated in a two-layer primitive
equation model., The model is 900 km x 1600 km with
a grid resolution of 20 km and a time step as large
as 1/12 day. The model retains a free-surface and
treats internal and external gravity waves implicitly.
Forced inflow through the Yucatan Straits and out-
flow through the Florida Straits has been included.

A nine-year integration to statistical equilibrium
was performed with both wind and Loop-Current forcing
included. The circulation characteristics for a
mid-Gulf site, a site just south of New Orleans, and
a site corresponding to the OTEC Gulf test-site
are described, based on model results. Near-surface
and sub-surface scalar discharges from each plant
are traced for ten months and concentration maps

- presented. The relevance of these model predictions
to OTEC siting in the Gulf is discussed in detail.

Underwood, J.W. 1967. Oceanographic cruise summary
SALVOPS Vieques, U.S.S. Hoist (ARS-40). Naval
Oceanographic Office, Washington, D.C. Informal
Report IR#67-16, 44 pp. :

An oceanographic survey was conducted off the
eastern tip of Vieques Island during August 1966.
The purpose of the survey was to obtain current,
bottom sediment, and underwater photographic data
for immediate use by U.S. Navy divers working in
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the area. Only current data were predominantly tidal
with a nearly constant phase relationship between
maximum flood and ebb and predicted high and low
tides. Observed currents also were significantly
stronger than predicted currents and times of maxi-
mum flood and ebb occurred later than predicted.

Vukovich, F.M. 1978. Analysis of sea-surface tempera-
ture variations in the Gulf of Mexico using satellite
data for OTEC siting. In Proceedings of the Fifth
Ocean Thermal Energy Conversion Conference, 20-22
Feb. 1978. Univ. of Miami, Clean Energy Res. Ins.
pp III 38-63.

Sea-surface temperature variations were investi-
gated using NOAA infrared data in the northern portions
of the eastern Gulf of Mexico. The region was charac-
terized by sea-surface temperature variations produced
by cold intrusions of warm Loop Current water. The
central portion of this region was most affected,
but the results of the analysis suggested that this
entire region was a difficult place to site OTEC.

Webster, F. 1969. Vertical profiles of horizontal ocean
currents. Deep-Sea Res. 16(1):85-98.

‘Data collected from moored current feters at
a single site (Site D) in the western North Atlantic
are used to define vertical profiles of steady and
time-dependent horizontal ocean currents. The mean
velocity profile shows currents systematically
flowing towards the west, with amplitude which
decreases with depth. Time-dependent currents have
a vertical profile of kinetic energy which is pro-
portional to the vertical profile of Brunt Vaisala
frequency, N{2). Since the mean speed is dominated
by time-dependent components, its profile is approxi-
mately proportional to N 1/2.

At frequencies lower than I cycle per day, the
time-dependent motion is not horizontally isotropic
at all depths. In the surface layer, north-south (v)
components have a larger variance than east-west (u)
components; at mid-depths, the u-variance is greater;
at great depths the variances are approximately equal.
At frequencies higher than one cycle per day, the
motions are horizontally isotropic. The pattern of
an isotropy may be due to the interaction between low-
frequency processes and the nearby continental shelf.

Eddy momemtum fluxes have a profile which reverses
sign at the approximate depth of the continental shelf.
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Webster, F. 1971. On the intensity of horizontal ocean
currents. Deep-Sea Res. 18(9):885-893.

Ocean currents on both the east and west sides
of the Atlantic, near Bermuda, and in the Mediterranean
Sea show similar mean kinetic energy and mean speeds
from long-term current measurements. At a given
depth, there is less than a factor of two in the range
of speeds and a factor of four in kinetic energy.
In spite of intermittency in time and location in
space there is remarkable uniformity in the intensity
of the currents. A notable exception is a set of
high values of speed and kinetic energy NNE of Bermuda
that are possibly associated with a Gulf Stream meander.

Both moored current meters and neutrally buoyant
(Swallow) floats have been used for measurement of’
currents. Speed and total kinetic energy are similar
with the two methods, but estimates of the kinetic
energy of the fluctuating component of motion are
generally Tower when Swallow floats are used.

Wolff, P.M. 1978. Temperature difference resource.
In Proceedings of the Fifth Ocean Thermal Energy
Conversion Conference, 20-22 Feb, 1978. Univ. of
Miami, Clean Energy Res. Inst. pp IIT 11-37.

The continuous operation of OTEC plants requires
the availability of a consistent temperature difference
resource. The requirements of such a consistent
OTEC T resource are examined and related to other
parameters.

Ocean Data Systems, Inc. has examined all
temperature soundings in the archive for possible
OTEC sites in the following areas: Hawaii, Puerto
Rico, Gulf of Mexico, Florida Straits, and Florida -
East Coast. This investigation produced most probable
monthly soundings for each of 60 one-degree latitude
and longitude squares.

The Hawajian and Puerto Rico areas are character-
ized by homogeneous temperature conditions and small
varijability at all depths. In the Eastern Gulf of
Mexico and off Key West and Miami there are stronger
currents and greater space and temporal variability.
The Loop Current in the Eastern Gulf of Mexico causes
additional difficulties in analysis. A bi-modal
temperature structure can exist.
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Plans for additional resource analysis are
discussed.

Wolff, P.M. and L. Lewis. 1977. Monthly assessment
of temperature resource for three potential OTEC
sites. In Proceedings of the Fourth Annual
Conference on Ocean Thermal Energy Conversion,
22-24 March, 1977. \Univ. of New Orleans, pp 1V
57-60.

During 1975 Ocean Data Systems, Inc. assembled
an ocean temperature data set for OTEC purposes
from available soundings in Navy and NOAA files.

In this study the OTEC data file was summarized
monthly for three possible sites. The depth
necessary to achieve a T of 18°C, 20°C and 22°C
was determined for each area for the most probable
monthly temperature structure,

The data are presented in plan view and in

tabular form. For each site the existence of a

T of 20°C at a depth less than 1500 meters was
demonstrated for each month of the year.

Some information was provided on plans for
expanded investigation of this type.

Wood, E., M.J. Youngbluth, P. Yoshioka, M. Canoy.
1975. Cabo Mala Pascua Environmental Studies.

Puerto Rico Nuclear Center, U.P.R,, Mayaguez, PRNC-
188. 95 p.

This report is an environmental study of the
area just south of Cabo Mala Pascua, Puerto Rico,
with no conclusions or results, only data collected
and presented. These data collected were: currents,
temperature, salinity, dissolved oxygden, nutrients,
sediments, zooplankton, benthos, and terrestrial
vegetation.

Worthington, L.V. 1955, A new theory of Caribbean
bottom-water formation. Deep-Sea Res, 3:82-87.

A recent section across the Caribbean Sea shows
that in the Caribbean deep water oxygen values have
dropped 0.3 m1/1 in the last twenty years, a loss
closely corresponding to that in the North Atlantic
deep water. Study of the surrounding Atlantic water
suggests that the Caribbean deep water has not been
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renewed since the end of the eighteenth century,
coincident with a cold climatic variation at high
Tatitudes in the North Atlantic., It is further
deduced that the Windward Passage was the sill over
which this water originally came from the Atlantic,
and that both the Jungfern and Windward Passage
sills must be considerably shallower than
Dietrich's(1939) estimates.

Worthington, L. V. 1956. The temperature increase in
the Caribbean deep water since 1933. Deep-Sea Res.
3. (3): 234-235,

Observations of temperature of the deep
Caribbean water are made from 1500m to 3000m. The
dates discussed are 1933 and 1954. Using some
estimation of the temperature increase, an- attempt
is made to date the deep water in the Caribbean.

Worthington, L. V. 1966. Recent oceanographic measure-
ments in the Caribbean Sea. Deep-Sea Res. 13:
731-739,

Two oceanographic sections were made across the

two deepest sills of the Caribbean Sea in September

-~ 1963.  One ran from the Atlantic Ocean into the '
Venezuela Basin through the Anegada and Virgin
Islands Passages; the second ran from the Cayman
Basin into the Atlantic through the Windward
Passage. These sections differ from WUST's (1963,
1964) sections in that there is no evidence that
bottom water is entering the Caribbean at the pre-
sent time. The Cayman Basin bottom water appears
to have been warmed about 0.-03°C since the surveys
made by PARR in 1933 and 1937.

Worthington, L. V. 1971. Water circulation in the
Caribbean Sea and jts relationship to North Atlantic
circulation. SIRSCAR. UNESCO Paris. pp 181-191.

Using data from two oceanographic sections,
one from the Cayman Basin to the Atlantic, through
the Windward Passage, and the other through the
Virgin Islands Passage, tests were made to determine
the origin of the bottom water in the Caribbean.
Potential temperature profiles through the Windward
Passage and the Virgin Islands Passage both indicate
no renewal. Also, the dissolved silicate is differ-
ent from the basin to the Atlantic. There is no
evidence for renewal of the bottom water taking place
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at present.

The question of the main circulation in the
Caribbean was also studied. The present work
indicates that most of the circulation is to the
south, while water mass distribution studies of
others indicate the circulation maximum is to the
north.

Wright, W. R. 1%70. Northward transport of antarctic

Wust,

bottom water in the western Atlantic Ocean. Deep-
Sea Res., 17: (2) 367-371.

The volume transport of Antarctic Bottom Water
in the western basin of the Atlantic Ocean has been
determined by dynamic calculations for seven
oceanographic sections made during the International
Geophysical Year between 32°5 and 16°N. The refer-
ence level was based on the sharp bend, seen in both
temperature-depth and salinity-depth traces, that
marks the transition from North Atlantic Deep Water
to Antarctic Bottom Water. The northward transport
decreases from 5-6 x 10 m /sec in the southern
sections to about 10 m /sec in the northern
sections. The results are consistent with those
obtained by solving a-set of conservation equations
for a simple box medel of the deep circulation in
the western Atlantic.

G. 1963. On the stratification and circulation in
the cold water sphere of the Antillian-Caribbean
Basins. Deep-Sea Res. 10: 165-187.

The cold water circulation is discussed for the
Antillean-Caribbean Basins. The three water
masses investigated were the Subantarctic Inter-
mediate Water, the North Atlantic Intermediate Water,
and the Caribbean Bottom Water. The Subantarctic
Intermediate Water is formed at the southern polar
front, having a salinity minimum, and extends through-
out the whole breadth of the Atlantic at depths of
700-900 m. This water finds its way into the
Antillean Caribbean Basin, retaining its identity.
The North Atlantic Deep Water is formed near south
Greenland. This water makes its way to the 2000-
2500 m level, and is characterized by an oxygen
maximum. This water ultimately spills over the sills
into the Caribbean, and changes character enough to
have a slightly separate identity, the Caribbean
Bottom Water.
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Wust,

G. 1964. Stratification and circulation in the
Antillean-Caribbean Basins. Part 1. Columbia
Univ. Press, N.Y. pp 1-201.

The Caribbean and Antillean Basins are described
as of the available information for this data. The
circulation and stratification for all depths are
discussed, and are related to the surrounding waters.
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APPENDIX D

BIBLIOGRAPHY OF MARINE BIOLOGY REFERENCES FOR PUERTO RICO
AND OTHER TROPICAL WATERS
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